7 research outputs found
Impact of pollen on throughfall biochemistry in European temperate and boreal forests
Pollen is known to affect forest throughfall biochemistry, but underlying mechanisms are not fully understood. We used generalized additive mixed modelling to study the relationship between long-term series of measured throughfall fluxes in spring (April–June) at forest plots and corresponding airborne pollen concentrations (Seasonal Pollen Integral, SPIn) from nearby aerobiological monitoring stations. The forest plots were part of the intensive long term monitoring (Level II) network of the UNECE International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) with dominant tree genera Fagus, Quercus, Pinus and Picea, and were distributed all across Europe. We also conducted a 7-day laboratory dissolution experiment with bud scales and flower stalks of European beech (Fagus sylvatica L.), pollen of beech, common oak (Quercus robur L.), silver birch (Betula pendula L.), Scots pine (Pinus sylvestris L.), Corsican pine (Pinus nigra Arnold ssp. laricio (Poiret) Maire), Norway spruce (Picea abies (L.) Karst.) and sterilized pollen of silver birch in a nitrate (NO3--N) solution (11.3 mg N L-1). Throughfall fluxes of potassium (K+), ammonium (NH4+-N), dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) showed a positive relationship with SPIn whereas NO3--N fluxes showed a negative relationship with SPIn. In years with massive seed production of beech and oak SPIn and throughfall fluxes of K+ and DOC were higher, but fluxes of NO3--N were lower. The experiment broadly confirmed the findings based on field data. Within two hours, pollen released large quantities of K+, phosphate, DOC and DON, and lesser amounts of sulphate, sodium and calcium. After 24-48 hours, NO3--N started to disappear, predominantly in the treatments with broadleaved pollen, while concentrations of nitrite and NH4+-N increased. At the end of the experiment, the inorganic nitrogen (DIN) was reduced, presumably because it was lost as gaseous nitric oxide (NO). There was no difference for sterilized pollen, indicating that the involvement of microbial activity was limited in above N transformations. Our results show that pollen dispersal might be an overlooked factor in forest nutrient cycling and might induce complex canopy N transformations, although the net-impact on N throughfall fluxes is rather lo
Near-ground Effect of Height on Pollen Exposure
The effect of height on pollen concentration is not well documented and little is known about the near-ground
vertical profile of airborne pollen. This is important as most measuring stations are on roofs, but patient
exposure is at ground level. Our study used a big data approach to estimate the near-ground vertical profile
of pollen concentrations based on a global study of paired stations located at different heights. We
analyzed paired sampling stations located at different heights between 1.5 and 50m above ground level (AGL). This provided pollen data from 59 Hirst-type volumetric traps
from 25 different areas, mainly in Europe, but also covering North America and Australia, resulting in about
2,000,000 daily pollen concentrations analyzed. The daily ratio of the amounts of pollen from different heights
per location was used, and the values of the lower station were divided by the higher station. The lower station
of paired traps recorded more pollen than the higher trap. However, while the effect of height on pollen concentration
was clear, it was also limited (average ratio 1.3, range 0.7–2.2). The standard deviation of the pollen
ratio was highly variable when the lower station was located close to the ground level (below 10m AGL). We
show that pollen concentrations measured at >10m are representative for background near-ground levels
Effect of Height on Pollen Sampling in Relation to Pollen Exposure at Ground Level
Pollen monitoring networks around the world are mainly based on rooftop-located stations on buildings. Thus, measured airborne pollen levels could be different from ground level, where most allergic individual reside. Until now, the effects of height of sampling on pollen concentration are not well documented. The aim of this meta-analysis was to analyse these effects using a large number of twin sampling stations.
Pollen data from 45 twin-stations Hirst-type volumetric spore traps were analyzed, with a maximum distance of 5km between the twin traps, from 25 different locations. To compare the effect of height, the mean of the daily ratio of the amounts of pollen registrered at different heights was used. The values of the lowest station were divided by the higher station. Stations between 1.5m and 50 agl were considered.
The results showed that the traps at lower height registered generally higher pollen concentration (average pollen ratio higher than 1), although the behaviour of the ratio differed per pollen type. For instance, both Poaceae and Betula showed that as the height differenc eincreased, the pollen ratio was higher up to a certain height difference when the ratio stabilizes (around 1.5). On the other hand, the standard deviation of the pollen ratio was greater for the traps closer to ground level. Therefore the height difference is a factor which explains the pollen ratio in conjunction with other variables such as the minimum height of the lower trap or the distance between the spore traps.
These findings are highly relevant to clinical practice, as the relationship between pollen exposure at ground level and monitored airborne pollen concentrations at roof-top elvel are determined. Thus, the optimal pollen monitoring height could be optimized based on these result
Near-ground effect of height on pollen exposure
The effect of height on pollen concentration is not well documented and little is known about the near-ground vertical profile of airborne pollen. This is important as most measuring stations are on roofs, but patient exposure is at ground level. Our study used a big data approach to estimate the near-ground vertical profile of pollen concentrations based on a global study of paired stations located at different heights. We analyzed paired sampling stations located at different heights between 1.5 and 50 m above ground level (AGL). This provided pollen data from 59 Hirst-type volumetric traps from 25 different areas, mainly in Europe, but also covering North America and Australia, resulting in about 2,000,000 daily pollen concentrations analyzed. The daily ratio of the amounts of pollen from different heights per location was used, and the values of the lower station were divided by the higher station. The lower station of paired traps recorded more pollen than the higher trap. However, while the effect of height on pollen concentration was clear, it was also limited (average ratio 1.3, range 0.7–2.2). The standard deviation of the pollen ratio was highly variable when the lower station was located close to the ground level (below 10 m AGL). We show that pollen concentrations measured at >10 m are representative for background near-ground levels