128 research outputs found

    Progress of the Felsenkeller shallow-underground accelerator for nuclear astrophysics

    Full text link
    Low-background experiments with stable ion beams are an important tool for putting the model of stellar hydrogen, helium, and carbon burning on a solid experimental foundation. The pioneering work in this regard has been done by the LUNA collaboration at Gran Sasso, using a 0.4 MV accelerator. In the present contribution, the status of the project for a higher-energy underground accelerator is reviewed. Two tunnels of the Felsenkeller underground site in Dresden, Germany, are currently being refurbished for the installation of a 5 MV high-current Pelletron accelerator. Construction work is on schedule and expected to complete in August 2017. The accelerator will provide intense, 50 uA, beams of 1H+, 4He+, and 12C+ ions, enabling research on astrophysically relevant nuclear reactions with unprecedented sensitivity.Comment: Submitted to the Proceedings of Nuclei in the Cosmos XIV, 19-24 June 2016, Niigata/Japa

    Global Standards in Action: Insights from Anti-Money Laundering Regulation

    Get PDF
    As organizations have come under the increasing influence of global rules of all sorts, organization scholars have started studying the dynamics of global regulation. The purpose of this article is to identify and evaluate the contribution to this interdisciplinary field by the ‘Stockholm Centre for Organisational Research’. The latter’s key proposition is that while global regulation often consists of voluntary best practice rules it can nevertheless become highly influential under certain conditions. We assess how innovative this approach is using as a benchmark the state of the art in another field of relevance to the study of global regulation, i.e. ‘International Relations’. Our discussion is primarily theoretical but we draw on the case of global anti-money laundering regulation to illustrate our arguments and for inspirations of how to further elaborate the approach

    Exact Finite-Size-Scaling Corrections to the Critical Two-Dimensional Ising Model on a Torus. II. Triangular and hexagonal lattices

    Full text link
    We compute the finite-size corrections to the free energy, internal energy and specific heat of the critical two-dimensional spin-1/2 Ising model on a triangular and hexagonal lattices wrapped on a torus. We find the general form of the finite-size corrections to these quantities, as well as explicit formulas for the first coefficients of each expansion. We analyze the implications of these findings on the renormalization-group description of the model.Comment: 45 pages (LaTeX2e). Self-unpacking file containing the tex file and three macros (indent.sty, eqsection.sty, subeqnarray.sty). Paper I corresponds to cond-mat/0009054. Final versio

    Renormalization group analysis of the spin-gap phase in the one-dimensional t-J model

    Full text link
    We study the spin-gap phase in the one-dimensional t-J model, assuming that it is caused by the backward scattering process. Based on the renormalization group analysis and symmetry, we can determine the transition point between the Tomonaga-Luttinger liquid and the spin-gap phases, by the level crossing of the singlet and the triplet excitations. In contrast to the previous works, the obtained spin-gap region is unexpectedly large. We also check that the universality class of the transition belongs to the k=1k=1 SU(2) Wess-Zumino-Witten model.Comment: 4 pages(RevTeX), 5 figures(EPS), TITCMT-97-10, to appear in Phys. Rev. Let

    Spin-Gap Phases in Tomonaga-Luttinger Liquids

    Full text link
    We give the details of the analysis for critical properties of spin-gap phases in one-dimensional lattice electron models. In the Tomonaga-Luttinger (TL) liquid theory, the spin-gap instability occurs when the backward scattering changes from repulsive to attractive. This transition point is shown to be equivalent to that of the level-crossing of the singlet and the triplet excitation spectra, using the c=1 conformal field theory and the renormalization group. Based on this notion, the transition point between the TL liquid and the spin-gap phases can be determined with high-accuracy from the numerical data of finite-size clusters. We also discuss the boundary conditions and discrete symmetries to extract these excitation spectra. This technique is applied to the extended Hubbard model, the t-J model, and the t-J-J' model, and their phase diagrams are obtained. We also discuss the relation between our results and analytical solutions in weak-coupling and low-density limits.Comment: 14 pages(REVTeX), 9 figures(EPS), 1 table, To appear in PRB, Detailed paper of PRL 79 (1997) 3214 and JPSJ 67 (1998) 71

    Tricritical Behavior in the Extended Hubbard Chains

    Full text link
    Phase diagrams of the one-dimensional extended Hubbard model (including nearest-neighbor interaction VV) at half- and quarter-filling are studied by observing level crossings of excitation spectra using the exact diagonalization. This method is based on the Tomonaga-Luttinger liquid theory including logarithmic corrections which stem from the renormalization of the Umklapp- and the backward-scattering effects. Using this approach, the phase boundaries are determined with high accuracy, and then the structure of the phase diagram is clarified. At half-filling, the phase diagram consists of two Berezinskii-Kosterlitz-Thouless (BKT) transition lines and one Gaussian transition line in the charge sector, and one spin-gap transition line. This structure reflects the U(1) \otimes SU(2) symmetry of the electron system. Near the U=2VU=2V line, the Gaussian and the spin-gap transitions take place independently from the weak- to the intermediate-coupling region, but these two transition lines are coupled in the strong-coupling region. This result demonstrates existence of a tricritical point and a bond-charge-density-wave (BCDW) phase between charge- and spin-density-wave (CDW, SDW) phases. To clarify this mechanism of the transition, we also investigate effect of a correlated hopping term which plays a role to enlarge BCDW and bond-spin-density-wave (BSDW) phases. At quarter-filling, a similar crossover phenomenon also takes place in the large-VV region involving spin-gap and BKT-type metal-insulator transitions.Comment: 18 pages(REVTeX), 17 figures(EPS(color)), 3 tables, Detailed paper of JPSJ 68 (1999) 3123 (cond-mat/9903227), see also cond-mat/000341
    corecore