47 research outputs found

    The synthetic glucocorticoids prednisolone and dexamethasone regulate the same genes in acute lymphoblastic leukemia cells

    Get PDF
    BACKGROUND: Glucocorticoids (GCs) cause apoptosis in malignant cells of lymphoid lineage by transcriptionally regulating a plethora of genes. As a result, GCs are included in almost all treatment protocols for lymphoid malignancies, particularly childhood acute lymphoblastic leukemia (chALL). The most commonly used synthetic GCs in the clinical setting are prednisolone and dexamethasone. While the latter has a higher activity and more effectively reduces the tumor load in patients, it is also accompanied by more serious adverse effects than the former. Whether this difference might be explained by regulation of different genes by the two GCs has never been addressed. RESULTS: Using a recently developed GC bioassay based on a GC-responsive reporter construct in human Jurkat T-ALL cells, we found ~7-fold higher biological activity with dexamethasone than prednisolone. Similarly, 1.0e-7 M dexamethasone and 7.0e-7 M prednisolone triggered similar cell death rates in CCRF-CEM-C7H2 T-chALL cells after 72 hours of treatment. Using microarray-based whole genome expression profiling and a variety of statistical and other approaches, we compared the transcriptional response of chALL cells to 6 hour exposure to both synthetic GCs at the above concentrations. Our experiments did not detect any gene whose regulation by dexamethasone differed significantly from that by prednisolone. CONCLUSIONS: Our findings suggest that the reported differences in treatment efficacy and cytotoxicity of dexamethasone and prednisolone are not caused by inherent differences of the 2 drugs to regulate the expression of certain genes, but rather result either from applying them in biologically in-equivalent concentrations and/or from differences in their pharmacokinetics and - dynamics resulting in different bioactivities in tumor cells and normal tissues

    The impact of Rotavirus mass vaccination on hospitalization rates, nosocomial Rotavirus gastroenteritis and secondary blood stream infections

    Get PDF
    Background The aim of the study was to evaluate the effects of universal mass vaccination (UMV) against rotavirus (RV) on the hospitalization rates, nosocomial RV infections and RV-gastroenteritis (GE)-associated secondary blood stream infections (BSI). Methods The retrospective evaluation (2002–2009) by chart analysis included all clinically diagnosed and microbiologically confirmed RV-GE cases in a large tertiary care hospital in Austria. The pre-vaccination period (2002–2005) was compared with the recommended and early funded (2006–2007) and the funded (2008–2009) vaccination periods. Primary outcomes were RV-GE-associated hospitalizations, secondary outcomes nosocomial RV disease, secondary BSI and direct hospitalization costs for children and their accompanying persons. Results In 1,532 children with RV-GE, a significant reduction by 73.9% of hospitalized RV-GE cases per year could be observed between the pre-vaccination and the funded vaccination period, which was most pronounced in the age groups 0–11 months (by 87.8%), 6–10 years (by 84.2%) and 11–18 years (88.9%). In the funded vaccination period, a reduction by 71.9% of nosocomial RV-GE cases per year was found compared to the pre-vaccination period. Fatalities due to nosocomial RV-GE were only observed in the pre-vaccination period (3 cases). Direct costs of hospitalized, community-acquired RV-GE cases per year were reduced by 72.7% in the funded vaccination period. The reduction of direct costs for patients (by 86.9%) and accompanying persons (86.2%) was most pronounced in the age group 0–11 months. Conclusions UMV may have contributed to the significant decrease of RV-GE-associated hospitalizations, to a reduction in nosocomial RV infections and RV-associated morbidity due to secondary BSI and reduced direct hospitalization costs. The reduction in nosocomial cases is an important aspect considering severe disease courses in hospitalized patients with co-morbidities and death due to nosocomial RV-GE

    A Molecular Function Map of Ewing's Sarcoma

    Get PDF
    EWS-FLI1 is a chimeric ETS transcription factor that is, due to a chromosomal rearrangement, specifically expressed in Ewing's sarcoma family tumors (ESFT) and is thought to initiate the development of the disease. Previous genomic profiling experiments have identified EWS-FLI1-regulated genes and genes that discriminate ESFT from other sarcomas, but so far a comprehensive analysis of EWS-FLI1-dependent molecular functions characterizing this aggressive cancer is lacking.In this study, a molecular function map of ESFT was constructed based on an integrative analysis of gene expression profiling experiments following EWS-FLI1 knockdown in a panel of five ESFT cell lines, and on gene expression data from the same platform of 59 primary ESFT. Out of 80 normal tissues tested, mesenchymal progenitor cells (MPC) were found to fit the hypothesis that EWS-FLI1 is the driving transcriptional force in ESFT best and were therefore used as the reference tissue for the construction of the molecular function map. The interrelations of molecular pathways were visualized by measuring the similarity among annotated gene functions by gene sharing. The molecular function map highlighted distinct clusters of activities for EWS-FLI1 regulated genes in ESFT and revealed a striking difference between EWS-FLI1 up- and down-regulated genes: EWS-FLI1 induced genes mainly belong to cell cycle regulation, proliferation, and response to DNA damage, while repressed genes were associated with differentiation and cell communication.This study revealed that EWS-FLI1 combines by distinct molecular mechanisms two important functions of cellular transformation in one protein, growth promotion and differentiation blockage. By taking MPC as a reference tissue, a significant EWS-FLI1 signature was discovered in ESFT that only partially overlapped with previously published EWS-FLI1-dependent gene expression patterns, identifying a series of novel targets for the chimeric protein in ESFT. Our results may guide target selection for future ESFT specific therapies

    The p53 binding protein PDCD5 is not rate-limiting in DNA damage induced cell death

    Get PDF
    The tumour suppressor p53 is an important mediator of cell cycle arrest and apoptosis in response to DNA damage, acting mainly by transcriptional regulation of specific target genes. The exact details how p53 modulates this decision on a molecular basis is still incompletely understood. One mechanism of regulation is acetylation of p53 on lysine K120 by the histone-acetyltransferase Tip60, resulting in preferential transcription of proapoptotic target genes. PDCD5, a protein with reported pro-apoptotic function, has recently been identified as regulator of Tip60-dependent p53-acetylation. In an effort to clarify the role of PDCD5 upon DNA damage, we generated cell lines in which PDCD5 expression was conditionally ablated by shRNAs and investigated their response to genotoxic stress. Surprisingly, we failed to note a rate-limiting role of PDCD5 in the DNA damage response. PDCD5 was dispensable for DNA damage induced apoptosis and cell cycle arrest and we observed no significant changes in p53 target gene transcription. While we were able to confirm interaction of PDCD5 with p53, we failed to do so for Tip60. Altogether, our results suggest a role of PDCD5 in the regulation of p53 function but unrelated to cell cycle arrest or apoptosis, at least in the cell types investigated.FP06 RTN ‘ApopTrain’Tyrolean Science FundKrebshilfe-Tyro

    Expression, regulation and function of phosphofructo-kinase/fructose-biphosphatases (PFKFBs) in glucocorticoid-induced apoptosis of acute lymphoblastic leukemia cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glucocorticoids (GCs) cause apoptosis and cell cycle arrest in lymphoid cells and constitute a central component in the therapy of lymphoid malignancies, most notably childhood acute lymphoblastic leukemia (ALL). PFKFB2 (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-2), a kinase controlling glucose metabolism, was identified by us previously as a GC response gene in expression profiling analyses performed in children with ALL during initial systemic GC mono-therapy. Since deregulation of glucose metabolism has been implicated in apoptosis induction, this gene and its relatives, PFKFB1, 3, and 4, were further analyzed.</p> <p>Methods</p> <p>Gene expression analyses of isolated lymphoblasts were performed on Affymetrix HGU133 Plus 2.0 microarrays. GCRMA normalized microarray data were analyzed using R-Bioconductor packages version 2.5. Functional gene analyses of <it>PFKFB2-15A </it>and <it>-15B </it>isoforms were performed by conditional gene over-expression experiments in the GC-sensitive T-ALL model CCRF-CEM.</p> <p>Results</p> <p>Expression analyses in additional ALL children, non-leukemic individuals and leukemic cell lines confirmed frequent <it>PFKFB2 </it>induction by GC in most systems sensitive to GC-induced apoptosis, particularly T-ALL cells. The 3 other family members, in contrast, were either absent or only weakly expressed (<it>PFKFB1 </it>and <it>4</it>) or not induced by GC (<it>PFKFB3</it>). Conditional PFKFB2 over-expression in the CCRF-CEM T-ALL <it>in vitro </it>model revealed that its 2 splice variants (PFKFB2-15A and PFKFB2-15B) had no detectable effect on cell survival. Moreover, neither PFKFB2 splice variant significantly affected sensitivity to, or kinetics of, GC-induced apoptosis.</p> <p>Conclusions</p> <p>Our data suggest that, at least in the model system investigated, PFKFB2 is not an essential upstream regulator of the anti-leukemic effects of GC.</p

    The Leukemia-Specific Fusion Gene ETV6/RUNX1 Perturbs Distinct Key Biological Functions Primarily by Gene Repression

    Get PDF
    -positive leukemic cell lines.-positive ALL samples underline the relevance of these pathways and molecular functions. We also validated six differentially expressed genes representing the categories “stem cell properties”, “B-cell differentiation”, “immune response”, “cell adhesion” and “DNA damage” with RT-qPCR. fusion gene interferes with key regulatory functions that shape the biology of this leukemia subtype. E/R may thus indeed constitute the essential driving force for the propagation and maintenance of the leukemic process irrespective of potential consequences of associated secondary changes. Finally, these findings may also provide a valuable source of potentially attractive therapeutic targets

    Development of a multipurpose GATEWAY-based lentiviral tetracycline-regulated conditional RNAi system (GLTR).

    No full text
    RNA interference (RNAi) has become an essential technology for functional gene analysis. Its success, however, depends on the effective expression of RNAi-inducing small double-stranded interfering RNA molecules (siRNAs) in target cells. In many cell types, RNAi can be achieved by transfection of chemically synthesised siRNAs, which results in transient knockdown of protein expression. Expression of double-stranded short hairpin RNA (shRNA) provides another means to induce RNAi in cells that are hard to transfect. To facilitate the generation of stable, conditional RNAi cell lines, we have developed novel one- and two-component vector GATEWAY-compatible lentiviral tetracycline-regulated RNAi (GLTR) systems. The combination of a modified RNA-polymerase-III-dependent H1 RNA promoter (designated 'THT') for conditional shRNA expression with different lentiviral delivery vectors allows (1) the use of fluorescent proteins for colour-coded combinatorial RNAi or for monitoring RNAi induction (pGLTR-FP), (2) selection of transduced cells (pGLTR-S), and (3) the generation of conditional cell lines using a one vector system (pGLTR-X). All three systems were found to be suitable for the analysis of essential genes, such as CDC27, a component of the mitotic ubiquitin ligase APC/C, in cell lines and primary human cells

    Fluorescent marker proteins enabling combinatorial RNAi.

    No full text
    <p>PreB697/EU3 cells were infected with lentiviral particles encoding a shRNA targeting BIM in combination with either eGFP- or dtTOMATO- fluorescence reporters. (A) PreB697/EU3 cells were sorted either for eGFP (left panel, R1), dtTOMATO- (middle panel, R2) or eGFP- and dtTOMATO- (right panel, R3) expression. (B) Protein lysates of sorted cells were analysed for BIM and α-tubulin expression by immunoblotting.</p
    corecore