4,200 research outputs found

    Microscopic Description of Nuclear Fission Dynamics

    Full text link
    We discuss possible avenues to study fission dynamics starting from a time-dependent mean-field approach. Previous attempts to study fission dynamics using the time-dependent Hartree-Fock (TDHF) theory are analyzed. We argue that different initial conditions may be needed to describe fission dynamics depending on the specifics of the fission phenomenon and propose various approaches towards this goal. In particular, we provide preliminary calculations for studying fission following a heavy-ion reaction using TDHF with a density contraint. Regarding prompt muon-induced fission, we also suggest a new approach for combining the time-evolution of the muonic wave function with a microscopic treatment of fission dynamics via TDHF

    Localization in light nuclei

    Full text link
    We investigate the presence of spatial localization in nuclei using a method that maps the nucleon same-spin pair probability and is based on the density-matrix. The method is used to study spatial localization of light nuclei within the Hartree-Fock approximation. We show that the method provides an alternative tool for studying spatial localization in comparison to the localization observed from maxima in the nuclear mass density.Comment: 6 pages, 5 figure

    Entrance Channel Dynamics of Hot and Cold Fusion Reactions Leading to Superheavy Elements

    Full text link
    We investigate the entrance channel dynamics for the reactions 70Zn+208Pb\mathrm{^{70}Zn}+\mathrm{^{208}Pb} and 48Ca+238U\mathrm{^{48}Ca}+\mathrm{^{238}U} using the fully microscopic time-dependent Hartree-Fock (TDHF) theory coupled with a density constraint. We calculate excitation energies and capture cross-sections relevant for the study of superheavy formations. We discuss the deformation dependence of the ion-ion potential for the 48Ca+238U\mathrm{^{48}Ca}+\mathrm{^{238}U} system and perform an alignment angle averaging for the calculation of the capture cross-section. The results show that this parameter-free approach can generate results in good agreement with experiment and other theories

    Infrared singularities in Landau gauge Yang-Mills theory

    Full text link
    We present a more detailed picture of the infrared regime of Landau gauge Yang-Mills theory. This is done within a novel framework that allows one to take into account the influence of finite scales within an infrared power counting analysis. We find that there are two qualitatively different infrared fixed points of the full system of Dyson-Schwinger equations. The first extends the known scaling solution, where the ghost dynamics is dominant and gluon propagation is strongly suppressed. It features in addition to the strong divergences of gluonic vertex functions in the previously considered uniform scaling limit, when all external momenta tend to zero, also weaker kinematic divergences, when only some of the external momenta vanish. The second solution represents the recently proposed decoupling scenario where the gluons become massive and the ghosts remain bare. In this case we find that none of the vertex functions is enhanced, so that the infrared dynamics is entirely suppressed. Our analysis also provides a strict argument why the Landau gauge gluon dressing function cannot be infrared divergent.Comment: 29 pages, 25 figures; published versio

    Fusion using time-dependent density-constrained DFT

    Full text link
    We present results for calculating fusion cross-sections using a new microscopic approach based on a time-dependent density-constrained DFT calculations. The theory is implemented by using densities and other information obtained from TDDFT time-evolution of the nuclear system as constraint on the density for DFT calculations.Comment: 4 Pages, 6 Figures Proceedings of INPC 2013, to be published in EPJ Web of Conference

    Attachment working models as unconscious structures: An experimental test

    Get PDF
    Internal working models of attachment (IWMs) are presumed to be largely unconscious representations of childhood attachment experiences. Several instruments have been developed to assess IWMs; some of them are based on self-report and others on narrative interview techniques. This study investigated the capacity of a self-report measure, the Inventory of Parent and Peer Attachment (IPPA; Armsden & Greenberg, 1987), and of a narrative interview method, the Adult Attachment Interview (AAI; George, Kaplan, & Main, 1985), to measure unconscious attachment models. We compared scores on the two attachment instruments to response latencies in an attachment priming task. It was shown that attachment organisation assessed by the AAI correlates with priming effects, whereas the IPPA scales were inversely or not related to priming. The results are interpreted as support for the assumption that the AAI assesses, to a certain degree, unconscious working models of attachment

    Conservation Properties in the Time-Dependent Hartree Fock Theory

    Full text link
    We discuss the conservation of angular momentum in nuclear time-dependent Hartree-Fock calculations for a numerical representation of wave functions and potentials on a three-dimensional cartesian grid. Free rotation of a deformed nucleus performs extremely well even for relatively coarse spatial grids. Heavy ion collisions produce a highly excited compound system associated with substantial nucleon emission. These emitted nucleons reach the bounds of the numerical box which leads to a decrease of angular momentum. We discuss strategies to distinguish the physically justified loss from numerical artifacts.Comment: 4 page
    corecore