821 research outputs found
A Revised Geometry for the Magnetic Wind of theta^1 Orionis C
Theta^1 Ori is thought to be a hot analog of Bp variables because its optical
and UV line and X-ray continuum fluxes modulate regularly over the
magnetic/rotational period. A flattened magnetosphere surrounding co-rotates
with these stars, producing a periodic modulation of emission and absorption
components of the UV resonance lines, as well as of optical H and He lines. In
this paper we examine these modulations in detail and point out that the
far-blue and near-red wings of C IV and N V resonance lines exhibit
anticorrelated modulations, causing mild flux elevations at moderate redshifts
at edge-on phase (phi=0.5). However, the lines do not exhibit rest-frame
absorption features, the usual signatures of cool static disks surrounding Bp
stars. We suggest that this behavior can be explained by the existence of two
geometrically distinct wind regions separated by the local magnetic Alfven
radius. Wind streams emerging outside this point are forced outward by
radiative forces and eventually expand outward radially to infinity - this
matter produces the far-blue wing absorptions at phi=0.5. Interior streams
follow closed loops and collide at the magnetic equator with counterstreams.
There they coalesce and fall back to the star along their original field lines
- these are responsible for mild emissions at this same phase. The rapid
circulation of the interior wind component back to the star is responsible for
the absence of static disk features.Comment: 7 figure
The CARMENES search for exoplanets around M dwarfs - Photospheric parameters of target stars from high-resolution spectroscopy
The new CARMENES instrument comprises two high-resolution and high-stability
spectrographs that are used to search for habitable planets around M dwarfs in
the visible and near-infrared regime via the Doppler technique. Characterising
our target sample is important for constraining the physical properties of any
planetary systems that are detected. The aim of this paper is to determine the
fundamental stellar parameters of the CARMENES M-dwarf target sample from
high-resolution spectra observed with CARMENES. We also include several M-dwarf
spectra observed with other high-resolution spectrographs, that is CAFE, FEROS,
and HRS, for completeness. We used a {chi}^2 method to derive the stellar
parameters effective temperature T_eff, surface gravity log g, and metallicity
[Fe/H] of the target stars by fitting the most recent version of the
PHOENIX-ACES models to high-resolution spectroscopic data. These stellar
atmosphere models incorporate a new equation of state to describe spectral
features of low-temperature stellar atmospheres. Since T_eff, log g, and [Fe/H]
show degeneracies, the surface gravity is determined independently using
stellar evolutionary models. We derive the stellar parameters for a total of
300 stars. The fits achieve very good agreement between the PHOENIX models and
observed spectra. We estimate that our method provides parameters with
uncertainties of {sigma} T_eff = 51 K, {sigma} log g = 0.07, and {sigma} [Fe/H]
= 0.16, and show that atmosphere models for low-mass stars have significantly
improved in the last years. Our work also provides an independent test of the
new PHOENIX-ACES models, and a comparison for other methods using
low-resolution spectra. In particular, our effective temperatures agree well
with literature values, while metallicities determined with our method exhibit
a larger spread when compared to literature results
Spectrum radial velocity analyser (SERVAL). High-precision radial velocities and two alternative spectral indicators
Context: The CARMENES survey is a high-precision radial velocity (RV)
programme that aims to detect Earth-like planets orbiting low-mass stars.
Aims: We develop least-squares fitting algorithms to derive the RVs and
additional spectral diagnostics implemented in the SpEctrum Radial Velocity
Analyser (SERVAL), a publicly available python code.
Methods: We measured the RVs using high signal-to-noise templates created by
coadding all available spectra of each star.We define the chromatic index as
the RV gradient as a function of wavelength with the RVs measured in the
echelle orders. Additionally, we computed the differential line width by
correlating the fit residuals with the second derivative of the template to
track variations in the stellar line width.
Results: Using HARPS data, our SERVAL code achieves a RV precision at the
level of 1m/s. Applying the chromatic index to CARMENES data of the active star
YZ CMi, we identify apparent RV variations induced by stellar activity. The
differential line width is found to be an alternative indicator to the commonly
used full width half maximum.
Conclusions: We find that at the red optical wavelengths (700--900 nm)
obtained by the visual channel of CARMENES, the chromatic index is an excellent
tool to investigate stellar active regions and to identify and perhaps even
correct for activity-induced RV variations.Comment: 13 pages, 13 figures. A&A in press. Code is available at
https://github.com/mzechmeister/serva
Late Cenozoic evolution of the eastern margin of the Tibetan Plateau: Inferences from ^(40)Ar/^(39)Ar and (U-Th)/He thermochronology
High topography in central Asia is perhaps the most fundamental expression of the Cenozoic Indo-Asian collision, yet an understanding of the timing and rates of development of the Tibetan Plateau remains elusive. Here we investigate the Cenozoic thermal histories of rocks along the eastern margin of the plateau adjacent to the Sichuan Basin in an effort to determine when the steep topographic escarpment that characterizes this margin developed. Temperature-time paths inferred from ^(40)Ar/^(39)Ar thermochronology of biotite, multiple diffusion domain modeling of alkali feldspar ^(40)Ar release spectra, and (U-Th)/He thermochronology of zircon and apatite imply that rocks at the present-day topographic front of the plateau underwent slow cooling (30°–50°C/m.y.) coincident with exhumation from inferred depths of ∼8–10 km, at denudation rates of 1–2 mm/yr. Samples from the interior of the plateau continued to cool relatively slowly during the same time period (∼3°C/m.y.), suggesting limited exhumation (1–2 km). However, these samples record a slight increase in cooling rate (from <1 to ∼3°C/m.y.) at some time during the middle Tertiary; the tectonic significance of this change remains uncertain. Regardless, late Cenozoic denudation in this region appears to have been markedly heterogeneous, with the highest rates of exhumation focused at the topographic front of the plateau margin. We infer that the onset of rapid cooling at the plateau margin reflects the erosional response to the development of regionally significant topographic gradients between the plateau and the stable Sichuan Basin and thus marks the onset of deformation related to the development of the Tibetan Plateau in this region. The present margin of the plateau adjacent to and north of the Sichuan Basin is apparently no older than the late Miocene or early Pliocene (∼5–12 Ma)
Major Miocene exhumation by fault-propagation folding within a metamorphosed, early Paleozoic thrust belt: Northwestern Argentina
The central Andean retroarc thrust belt is characterized by a southward transition at ∼22°S in structural style (thin-skinned in Bolivia, thick-skinned in Argentina) and apparent magnitude of Cenozoic shortening (>100 km more in the north). With the aim of evaluating the abruptness and cause of this transition, we conducted a geological and geo-thermochronological study of the Cachi Range (∼24–25°S), which is a prominent topographic feature at this latitude. Our U-Pb detrital zircon results from the oldest exposed rocks (Puncoviscana Formation) constrain deposition to mainly Cambrian time, followed by major, Cambro-Ordovician shortening and ∼484 Ma magmatism. Later, Cretaceous rift faults were locally inverted during Cenozoic shortening. Coupled with previous work, our new (U-Th)/He zircon results require 8–10 km of Miocene exhumation that was likely associated with fault-propagation folding within the Cachi Range. After Miocene shortening, displacement on sinistral strike-slip faults demonstrates a change in stress state to a non-vertically orientedσ3. This change in stress state may result from an increase in gravitational potential energy in response to significant crustal thickening and/or lithospheric root removal. Our finding of localized Cenozoic shortening in the Cachi Range increases the estimate of the local magnitude of shortening, but still suggests that significantly less shortening was accommodated south of the thin-skinned Bolivian fold-thrust belt. Our results also underscore the importance of the pre-existing stratigraphic and structural architecture in orogens in influencing the style of subsequent deformation.Fil: Pearson, D. M.. University Of Arizona; Estados Unidos. University Of Idaho; Estados UnidosFil: Kapp, P.. University Of Arizona; Estados UnidosFil: Reiners, P. W.. University Of Arizona; Estados UnidosFil: Gehrels, G. E.. University Of Arizona; Estados UnidosFil: Ducea, M. N.. University Of Arizona; Estados Unidos. University of Bucharest; RumaniaFil: Pullen, A.. University Of Arizona; Estados Unidos. University of Rochester; Estados UnidosFil: Otamendi, Juan Enrique. Universidad Nacional de Rio Cuarto. Facultad de Cs.exactas Fisicoquimicas y Naturales. Departamento de Geologia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Alonso, Ricardo Narciso. Universidad Nacional de Salta; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
The Rigidly Rotating Magnetosphere of Sigma Ori E
We attempt to characterize the observed variability of the magnetic
helium-strong star sigma Ori E in terms of a recently developed rigidly
rotating magnetosphere model. This model predicts the accumulation of
circumstellar plasma in two co-rotating clouds, situated in magnetohydrostatic
equilibrium at the intersection between magnetic and rotational equators. We
find that the model can reproduce well the periodic modulations observed in the
star's light curve, H alpha emission-line profile, and longitudinal field
strength, confirming that it furnishes an essentially correct, quantitative
description of the star's magnetically controlled circumstellar environment.Comment: 4 pages, 3 figures, accepted by Ap
The CARMENES search for exoplanets around M dwarfs: Radial-velocity variations of active stars in visual-channel spectra
Previous simulations predicted the activity-induced radial-velocity (RV)
variations of M dwarfs to range from cm/s to km/s, depending on
various stellar and activity parameters. We investigate the observed relations
between RVs, stellar activity, and stellar parameters of M dwarfs by analyzing
CARMENES high-resolution visual-channel spectra (m), which were
taken within the CARMENES RV planet survey during its first months of
operation. During this time, of the CARMENES-sample stars were observed
at least five times. From each spectrum we derived a relative RV and a measure
of chromospheric H emission. In addition, we estimated the chromatic
index (CRX) of each spectrum, which is a measure of the RV wavelength
dependence. Despite having a median number of only measurements per star,
we show that the RV variations of the stars with RV scatter of m/s and a
projected rotation velocity km/s are caused mainly by activity.
We name these stars `active RV-loud stars' and find their occurrence to
increase with spectral type: from for early-type M dwarfs
(MV) through for mid-type M dwarfs (MV) to
for late-type M dwarfs (MV). Their RV-scatter amplitude is
found to be correlated mainly with . For about half of the stars, we
also find a linear RVCRX anticorrelation, which indicates that their
activity-induced RV scatter is lower at longer wavelengths. For most of them we
can exclude a linear correlation between RV and H emission. Our results
are in agreement with simulated activity-induced RV variations in M dwarfs. The
RV variations of most active RV-loud M dwarfs are likely to be caused by dark
spots on their surfaces, which move in and out of view as the stars rotate.Comment: A&A accepte
High-Resolution Chandra X-Ray Imaging And Spectroscopy Of The Sigma Orionis Cluster
We present results of a 90 ks Chandra X-ray observation of the young sigma Orionis cluster ( age similar to 3 Myr) obtained with the HETGS. We use the high-resolution grating spectrum and moderate-resolution CCD spectrum of the massive central star sigma Ori AB (O9.5 V + B0.5 V) to test wind shock theories of X-ray emission and also analyze the high spatial resolution zero-order ACIS-S image of the central cluster region. Chandra detected 42 X-ray sources on the primary CCD (ACIS-S3). All but five have near-IR or optical counterparts and about one-fourth are variable. Notable high-mass stellar detections are sigma Ori AB, the magnetic B star sigma Ori E, and the B5 V binary HD 37525. Most of the other detections have properties consistent with lower mass K- or M-type stars. We present the first X-ray spectrum of the unusual infrared source IRS 1, located approximate to 3 \u27\u27 north of sigma Ori AB. Its X-ray properties and elongated mid-IR morphology suggest that it is an embedded low-mass T Tauri star whose disk/envelope is being photoevaporated by sigma Ori AB. We focus on the radiative wind shock interpretation of the soft luminous X-ray emission from sigma Ori AB, but also consider possible alternatives including magnetically confined wind shocks and colliding wind shocks. Its emission lines show no significant asymmetries or centroid shifts and are moderately broadened to HWHM approximate to 264 km s(-1), or one-fourth the terminal wind speed. Forbidden lines in He-like ions are formally undetected, implying strong UV suppression. The Mg XI triplet forms in the wind acceleration zone within one stellar radius above the surface. These X-ray properties are consistent in several respects with the predictions of radiative wind shock theory for an optically thin wind, but explaining the narrow line widths presents a challenge to the theory
Optical absorption spectra of finite systems from a conserving Bethe-Salpeter equation approach
We present a method for computing optical absorption spectra by means of a
Bethe-Salpeter equation approach, which is based on a conserving linear
response calculation for electron-hole coherences in the presence of an
external electromagnetic field. This procedure allows, in principle, for the
determination of the electron-hole correlation function self-consistently with
the corresponding single-particle Green function. We analyze the general
approach for a "one-shot" calculation of the photoabsorption cross section of
finite systems, and discuss the importance of scattering and dephasing
contributions in this approach. We apply the method to the closed-shell
clusters Na_4, Na^+_9 and Na^+_(21), treating one active electron per Na atom.Comment: 9 pages, 3 figure
- …
