55 research outputs found

    Poemes

    Get PDF

    Bells All Too Near

    Get PDF

    Trimming the Apple Trees in Winter

    Get PDF

    Dysregulation of Hypoxia-Inducible Factor by Presenilin/ Gamma-Secretase Loss-of-Function Mutations

    Full text link
    Presenilin (PSEN) 1 and 2 are the catalytic components of the Gamma-secretase complex, which cleaves a variety of proteins, including the amyloid precursor protein (APP). Proteolysis of APP leads to the formation of the APP intracellular domain (AICD) and amyloid Beta that is crucially involved in the pathogenesis of Alzheimer’s disease. Prolyl-4-hydroxylase-domain (PHD) proteins regulate the hypoxia inducible factors (HIFs), the master regulators of the hypoxic response.Wepreviously identified the FK506 binding protein 38 (FKBP38)as a negative regulator of PHD2. Genetic ablation of PSEN1/2 has been shown to increase FKBP38 protein levels. Therefore, we investigated the role of PSEN1/2 in the oxygen sensing pathway using a variety of genetically modified cell and mouse lines. Increased FKBP38 protein levels and decreased PHD2 protein levels were found in PSEN1/2-deficient mouse embryonic fibroblasts and in the cortex of forebrain-specific PSEN1/2 conditional double knock-out mice. Hypoxic HIF-1alpha protein accumulation and transcriptional activity were decreased, despite reduced PHD2 protein levels. Proteolytic gamma-secretase function ofPSEN1/2wasneeded for proper HIF activation. Intriguingly, PSEN1/2 mutations identified in Alzheimer patients differentially affected the hypoxicresponse, involving the generation of AICD. Together,our results suggest a direct role for PSEN in the regulation of the oxygen sensing pathway via the APP/AICD cleavage cascade

    EphB2-dependent signaling promotes neuronal excitotoxicity and inflammation in the acute phase of ischemic stroke

    Get PDF
    Local cerebral hypoperfusion causes ischemic stroke while driving multiple cell-specific responses including inflammation, glutamate-induced neurotoxicity mediated via NMDAR, edema formation and angiogenesis. Despite the relevance of these pathophysiological mechanisms for disease progression and outcome, molecular determinants controlling the onset of these processes are only partially understood. In this context, our study intended to investigate the functional role of EphB2, a receptor tyrosine kinase that is crucial for synapse function and binds to membrane-associated ephrin-B ligands. Cerebral ischemia was induced in Ephb2−/− mice by transient middle cerebral artery occlusion followed by different times (6, 12, 24 and 48 h) of reperfusion. Histological, neurofunctional and transcriptome analyses indicated an increase in EphB2 phosphorylation under these conditions and attenuated progression of stroke in Ephb2−/− mice. Moreover, while infiltration of microglia/macrophages and astrocytes into the peri-infarct region was not altered, expression of the pro-inflammatory mediators MCP-1 and IL-6 was decreased in these mice. In vitro analyses indicated that binding of EphB2 to astrocytic ephrin-B ligands stimulates NF-ÎșB-mediated cytokine expression via the MAPK pathway. Further magnetic resonance imaging of the Ephb2−/− ischemic brain revealed a lower level of cytotoxic edema formation within 6 h upon onset of reperfusion. On the mechanistic level, absence of neuronal EphB2 decreased the mitochondrial Ca2+ load upon specific activation of NMDAR but not during synaptic activity. Furthermore, neuron-specific loss of ephrin-B2 reduced the extent of cerebral tissue damage in the acute phase of ischemic stroke. Collectively, EphB2 may promote the immediate response to an ischemia-reperfusion event in the central nervous system by (i) pro-inflammatory activation of astrocytes via ephrin-B-dependent signaling and (ii) amplification of NMDA-evoked neuronal excitotoxicity

    Tick-borne encephalitis virus in dogs - is this an issue?

    Get PDF
    The last review on Tick-borne encephalitis (TBE) in dogs was published almost ten years ago. Since then, this zoonotic tick-borne arbovirus has been geographically spreading and emerging in many regions in Eurasia and continues to do so. Dogs become readily infected with TBE virus but they are accidental hosts not capable to further spread the virus. They seroconvert upon infection but they seem to be much more resistant to the clinical disease than humans. Apart from their use as sentinels in endemic areas, however, an increasing number of case reports appeared during the last decade thus mirroring the rising public health concerns. Owing to the increased mobility of people travelling to endemic areas with their companion dogs, this consequently leads to problems in recognizing and diagnosing this severe infection in a yet non-endemic area, simply because the veterinarians are not considering TBE. This situation warrants an update on the epidemiology, clinical presentation and possible preventions of TBE in the dog

    DNA methylation-based measures of biological age:meta-analysis predicting time to death

    Get PDF
    Estimates of biological age based on DNA methylation patterns, often referred to as "epigenetic age", "DNAm age", have been shown to be robust biomarkers of age in humans. We previously demonstrated that independent of chronological age, epigenetic age assessed in blood predicted all-cause mortality in four human cohorts. Here, we expanded our original observation to 13 different cohorts for a total sample size of 13,089 individuals, including three racial/ethnic groups. In addition, we examined whether incorporating information on blood cell composition into the epigenetic age metrics improves their predictive power for mortality. All considered measures of epigenetic age acceleration were predictive of mortality (p ≀ 8.2 x 10-9), independent of chronological age, even after adjusting for additional risk factors (p < 5.4 x 10-4), and within the racial/ethnic groups that we examined (non-Hispanic whites, Hispanics, African Americans). Epigenetic age estimates that incorporated information on blood cell composition led to the smallest p-values for time to death (p≀ 7.5 x 10-43). Overall, this study a) strengthens the evidence that epigenetic age predicts all-cause mortality above and beyond chronological age and traditional risk factors, and b) demonstrates that epigenetic age estimates that incorporate information on blood cell counts lead to highly significant associations with all-cause mortality

    Lesung "Drei Credo" Reiner Kunze

    No full text
    Lesung aus Anlaß seines 70. Geburtstages auf Einladung des CEJ am 26.08.2003 in der Aula der FS

    Impaired hypoxic response in senescent mouse brain

    Get PDF
    'This is the author's version of a work that was accepted for publication in International Journal of Developmental Neuroscience. Changes resulting from the publishing process, such as structural formatting and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in International Journal of Developmental Neuroscience, 29 (6) (2011) 10.1016/j.ijdevneu.2011.06.003'Tissue hypoxia leads to activation of endogenous adaptive responses that involve a family of prolyl hydroxylase domain proteins (PHD1-3) with oxygen sensing properties, hypoxia inducible transcription factors (HIFs), and cytoprotective HIF target genes such as erythropoietin (EPO) and vascular endothelial growth factor (VEGF). The hypoxic induction of these genes is regulated by oxygen-dependent hydroxylation of HIF alpha subunits by PHDs, which signals their proteasomal degradation. In this study, mice of different age were exposed to hypoxia or subjected to cerebral ischemia after hypoxic pre-conditioning. We found an impaired hypoxic response in the brain, characterized by elevated levels and impaired downregulation of PHD1. Furthermore, an attenuated hypoxic activation of VEGF and EPO, as well as of other HIF-target genes such glucose transporter-1 and carbonic anhydrase 9 was found in senescent brain. Finally, we observed a loss of the protective effect of hypoxic pre-conditioning on subsequent cerebral ischemia with increasing age. Thus, the impaired hypoxic adaptation, resulting in compromised hypoxic activation of neuroprotective factors, could contribute to neurodegenerative processes with increasing age, and might have implications for treating age-related disorders.Peer reviewedFinal Accepted Versio
    • 

    corecore