118 research outputs found

    Combinatorial Optimization and Integer Programming

    Get PDF
    Solution techniques for combinatorial optimization and integer programming problems are core disciplines in operations research with contributions of mathematicians as well as computer scientists and economists. This article surveys the state of the art in solving such problems to optimality

    Generating partitions of a graph into a fixed number of minimum weight cuts

    Get PDF
    AbstractIn this paper, we present an algorithm for the generation of all partitions of a graph G with positive edge weights into k mincuts. The algorithm is an enumeration procedure based on the cactus representation of the mincuts of G. We report computational results demonstrating the efficiency of the algorithm in practice and describe in more detail a specific application for generating cuts in branch-and-cut algorithms for the traveling salesman problem

    The Traveling Salesman Problem

    Get PDF
    This paper presents a self-contained introduction into algorithmic and computational aspects of the traveling salesman problem and of related problems, along with their theoretical prerequisites as seen from the point of view of an operations researcher who wants to solve practical problem instances. Extensive computational results are reported on most of the algorithms described. Optimal solutions are reported for instances with sizes up to several thousand nodes as well as heuristic solutions with provably very high quality for larger instances

    Provably good solutions for the traveling salesman problem

    Get PDF
    The determination of true optimum solutions of combinatorial optimization problems is seldomly required in practical applications. The majority of users of optimization software would be satisfied with solutions of guaranteed quality in the sense that it can be proven that the given solution is at most a few percent off an optimum solution. This paper presents a general framework for practical problem solving with emphasis on this aspect. A detailed discussion along with a report about extensive computational experiments is given for the traveling salesman problem

    An ILP Solver for Multi-label MRFs with Connectivity Constraints

    Full text link
    Integer Linear Programming (ILP) formulations of Markov random fields (MRFs) models with global connectivity priors were investigated previously in computer vision, e.g., \cite{globalinter,globalconn}. In these works, only Linear Programing (LP) relaxations \cite{globalinter,globalconn} or simplified versions \cite{graphcutbase} of the problem were solved. This paper investigates the ILP of multi-label MRF with exact connectivity priors via a branch-and-cut method, which provably finds globally optimal solutions. The method enforces connectivity priors iteratively by a cutting plane method, and provides feasible solutions with a guarantee on sub-optimality even if we terminate it earlier. The proposed ILP can be applied as a post-processing method on top of any existing multi-label segmentation approach. As it provides globally optimal solution, it can be used off-line to generate ground-truth labeling, which serves as quality check for any fast on-line algorithm. Furthermore, it can be used to generate ground-truth proposals for weakly supervised segmentation. We demonstrate the power and usefulness of our model by several experiments on the BSDS500 and PASCAL image dataset, as well as on medical images with trained probability maps.Comment: 19 page
    corecore