118 research outputs found
Combinatorial Optimization and Integer Programming
Solution techniques for combinatorial optimization and integer programming problems are core disciplines in operations research with contributions of mathematicians as well as computer scientists and economists. This article surveys the state of the art in solving such problems to optimality
Generating partitions of a graph into a fixed number of minimum weight cuts
AbstractIn this paper, we present an algorithm for the generation of all partitions of a graph G with positive edge weights into k mincuts. The algorithm is an enumeration procedure based on the cactus representation of the mincuts of G. We report computational results demonstrating the efficiency of the algorithm in practice and describe in more detail a specific application for generating cuts in branch-and-cut algorithms for the traveling salesman problem
The Traveling Salesman Problem
This paper presents a self-contained introduction into algorithmic and computational aspects of the traveling salesman problem and of related problems, along with their theoretical prerequisites as seen from the point of view of an operations researcher who wants to solve practical problem instances. Extensive computational results are reported on most of the algorithms described. Optimal solutions are reported for instances with sizes up to several thousand nodes as well as heuristic solutions with provably very high quality for larger instances
Provably good solutions for the traveling salesman problem
The determination of true optimum solutions of combinatorial optimization problems is seldomly required in practical applications. The majority of users of optimization software would be satisfied with solutions of guaranteed quality in the sense that it can be proven that the given solution is at most a few percent off an optimum solution. This paper presents a general framework for practical problem solving with emphasis on this aspect. A detailed discussion along with a report about extensive computational experiments is given for the traveling salesman problem
An ILP Solver for Multi-label MRFs with Connectivity Constraints
Integer Linear Programming (ILP) formulations of Markov random fields (MRFs)
models with global connectivity priors were investigated previously in computer
vision, e.g., \cite{globalinter,globalconn}. In these works, only Linear
Programing (LP) relaxations \cite{globalinter,globalconn} or simplified
versions \cite{graphcutbase} of the problem were solved. This paper
investigates the ILP of multi-label MRF with exact connectivity priors via a
branch-and-cut method, which provably finds globally optimal solutions. The
method enforces connectivity priors iteratively by a cutting plane method, and
provides feasible solutions with a guarantee on sub-optimality even if we
terminate it earlier. The proposed ILP can be applied as a post-processing
method on top of any existing multi-label segmentation approach. As it provides
globally optimal solution, it can be used off-line to generate ground-truth
labeling, which serves as quality check for any fast on-line algorithm.
Furthermore, it can be used to generate ground-truth proposals for weakly
supervised segmentation. We demonstrate the power and usefulness of our model
by several experiments on the BSDS500 and PASCAL image dataset, as well as on
medical images with trained probability maps.Comment: 19 page
- …