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a b s t r a c t

In this paper, we present an algorithm for the generation of all partitions of a graph G
with positive edge weights into k mincuts. The algorithm is an enumeration procedure
based on the cactus representation of the mincuts of G. We report computational results
demonstrating the efficiency of the algorithm in practice and describe in more detail a
specific application for generating cuts in branch-and-cut algorithms for the traveling
salesman problem.
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1. Introduction

Throughout this paper, G = (V , E, w) denotes a simple connected undirected graphwith vertex set V = {1, . . . , n}, edge
set E, |E| = m, and positive real edge weights we > 0, for all e ∈ E. An edge e ∈ E is an unordered pair {u, v} of vertices
u, v ∈ V . A cut in G is the set of edges linking some vertex set U 6= ∅, U 6= V , to its complement U = V \ U . Thus a cut is
completely defined by either of its shores U or U . For the purposes of this paper we will denote a cut by its inducing node
set U (or U) and consider U and U as different cuts. The size of a cut U ⊂ V is its cardinality |U|. The weight of a cut U ⊂ V
is defined as the sum of the weights of the edges between U and U and is denoted by w(U : U). A global minimum weight
cut in G is also calledmincut and its weight is denoted by λ. The set of all mincuts of G is denoted byM.
For some integer k, 2 ≤ k ≤ n, a k-cut is a k-partition {V1, . . . , Vk} of V , i.e., a partition of V into k cuts Vi. The elements

of a partition are also called cells. Theweight of a k-cut is defined as the total weight of all edges with end nodes in different
cells. A minimum k-cut is a k-cut of minimum weight and its weight is denoted by λk. Obviously λ = λ2 and λk′ ≥ λk, if
k′ > k. Since every cell of a k-cut has weight at least λ, it follows that λk ≥ k λ2 .
This paper focuses on the situation where a minimum k-cut has the least possible weight λk = k λ2 which is equivalent

to saying that every cell is a mincut. Such a k-cut is called a mincut k-partition and the set of all mincut k-partitions of G is
denoted byMk. While G always has a minimum k-cut, it does not necessarily always have a mincut k-partition. Namely, if
λk > k λ2 , thenMk = ∅.
The minimum 2-cut ormincut problem is a classical problem and well studied (see Chekuri et al. [1] and Jünger et al. [2]

for overviews and computational comparisons of several mincut algorithms). Dinitz et al. [3] introduced the so-called cactus
representation, denoted byH in the following, of the setM of all mincuts of G. Whereas G has O(n2) mincuts [4], a cactus
H only needs O(n) space for storingM. Furthermore,H also mirrors the inclusion and intersection structures ofM, gives
quick access to the size of mincuts, helps to keep the space requirement of the suggested generation algorithm small, and
enables an efficient test for mincut-intersection.
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Aminimum k-cut in Gwhere k is not fixed, i.e., is part of the input, cannot be found in polynomial time [5] (unless P=NP).
For fixed k, Goldschmidt and Hochbaum in [5] give the first polynomial algorithm (requiring O(nk

2/2−3k/2+4) minimum
(s, t)-cut computations). Karger and Stein [4] suggest a randomized Monte Carlo algorithm for the problem. Saran and
Vazirani [6] and Kapoor [7] propose 2− 2

k -approximation algorithms for the minimum k-cut problem. Zhao et al. [8] based
their approximation of minimum k-cuts on minimum 3-cuts.
The literature on minimum k-cuts often concentrates on k ≤ 6. For minimum 3-cuts in planar graphs, see Hochbaum

and Shmoys [9] and He [10]. Burlet and Goldschmidt [11] give an O(mn3) algorithm for the minimum 3-cut problem.
Nagamochi and Ibaraki [12] are concerned with k ∈ {3, 4} and Nagamochi et al. [13] with k ∈ {5, 6}. Levine [14] suggests
fast randomized algorithms for the computation of minimum {3, 4, 5, 6}-cuts. Kamidoi et al. [15] present algorithms for
minimum 3- and 4-cuts requiring O(n4) and O(n6)maximum flow computations, respectively.
Given k nodes, the problem of finding a minimum k-cut such that each cell contains exactly one of these nodes is NP-

hard for k > 2 (Dahlhaus et al. [16]). In the case of a planar graph, this problem is solvable in polynomial time for fixed
k [16] (see Yeh [17] for an elegant algorithm). Dahlhaus et al. [16] give a 2− 2

k -approximation algorithm for the minimum
k-terminal cut problem; Calinescu et al. [18] and Karger et al. [19] improve on the approximation guarantee. For k = 3, both
Cunningham and Tang [20] and Karger et al. [19] obtain the best possible approximation guarantee 1211 .
In this paper we consider the problem of generating all mincut k-partitions of a graph G, for some given k. Section 2

describes the cactus representation of mincuts which is the basis for the efficient algorithm for generatingMk. Section 3
outlines the general framework of the algorithm taking a sequence of mincuts as input. In Section 4 this sequence is
reduced by ignoring mincuts that cannot be in a mincut k-partition. The test for intersection of mincuts described in
Section 5 is a key to the efficiency of our algorithm. Section 6 discusses computational results demonstrating the efficiency in
practice. Section 7 is concerned with the particular application of using mincut k-partitions in branch-and-cut approaches
to the TSP. For the TSP, the generation can be speeded up further by skipping some undesirable mincut k-partitions, as
described in Section 8. Section 9 shows that the generation of the desirable partitions is feasible and fast even for large TSP
instances.

2. The cactus representation of mincuts

A graph is called cactus if every edge is contained in atmost one cycle.We distinguish between cycle edges (contained in a
cycle) and tree edges (contained in no cycle). Cacti we encounter here will be connected and for cacti we say node instead of
vertex. A cycle with h edges is called an h-cycle. For technical reasons, we replace every tree edge by a pair of parallel edges
so that we obtain 2-cycles. Whenever appropriate, the edges of a cactus are assumed to have weight 1.
Given G = (V , E, w), there is a cactus with node set N and a mapping π : V → N such thatM = {π−1(C) | C ⊂

N is a mincut of the cactus} (see Dinitz et al. [3] or Naor and Vazirani [21]). This cactus is called a cactus representation ofM
or a cactus of G. Its nodes ni ∈ N correspond to subsets π−1({ni}) (possibly ∅) of V . Every mincut of the cactus induces a
mincut of G and every mincut of G can be obtained at least once in this way. For a cut C ⊂ N we write V (C) for π−1(C) and
say that V (C) ⊂ V is induced by C . A cactus node inducing ∅ is called empty.
The mincuts of a cactus are easily obtained by removing two different edges of the same cycle which splits a cactus

into two connected components. The nodes of each component form a mincut of the cactus. By traversing the connected
component of a mincut of a cactus of G and collecting the vertices of G induced by cactus nodes, we get the induced mincut
M ∈M of G in time O(|M|). A cactus of G can thus be viewed as a condensed set representing all O(n2)mincuts of G in space
O(n) instead of O(n3) necessary for listing all mincuts explicitly.
There may be more than one cactus representation of M, but the representation can be made unique by requiring

additional properties. A cactus node belonging to exactly ν cycles is called a ν-junction node. A representation is called
canonical [22–24] if there is no empty 2-junction node belonging to a 2-cycle and no empty 3-junction node. The canonical
cactus is unique [25] and every cactus of G can be transformed into its canonical form [22,24] denoted byH in the following.
The first polynomial construction algorithm is due to Karzanov and Timofeev [26]. Nagamochi and Kameda [25] show

that the canonical cactus of G has at most 2n nodes. We refer to De Vitis [22], Fleischer [23], Nagamochi et al. [24], and
Wenger [27] for deterministic algorithms constructingH from G.
The deletion of two edges of a cycle of a cactus yields two complementary mincuts. In order to define without ambiguity

which mincut we refer to, we orient the cactus edges. From now on, let the edges of a cactus be oriented in such a way that
we walk around a cycle if we follow the directed edges of a cycle.
A directed edge c points from its tail node tail(c) to its head node head(c). Every mincut ofH and thus every mincut of

G can now be described by an ordered pair (ci, cj) of cactus edges where ci 6= cj and both ci and cj belong to the same cycle.
We define that (ci, cj) describes the mincut ofH or G at the head of ci. The mincut described by (cj, ci) is the complement
of the mincut described by (ci, cj).
Fig. 1 shows an example of a cactus representation. In the graph G, dotted edges have weight 1 and solid edges have

weight 2. The pair (c1, c2) describes the mincut {4, 18} of G. The pair (c3, c4) describes a different mincut ofH containing
an empty node, but the same mincut {4, 18} of G. If a mincut of G is induced by more than one mincut of H , then it is
induced by exactly two. Such a mincut of G is called a double mincut. Only empty 2-junction nodes ofH give rise to double
mincuts [22].
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Fig. 1. A graph Gwith 24 vertices and its canonical cactusH with 23 nodes.

Remark 1. To avoid ambiguity and to lock enough nodes for the intersection test in Section 5, we always describe a double
mincut D of G by the pair of cactus edges (ci, cj) such that head(ci) is empty and equals tail(cj). We rule out the second
possibility for inducing D. For example, we choose (c3, c4) instead of (c1, c2) to describe the double mincut {4, 18} in Fig. 1.

A mincut M ∈ M obtained by removing two different edges of a given cycle ofH is said to be represented by the cycle.
A mincut of G that is described by a pair (ci, cj) of edges of a given cycle such that head(ci) = tail(cj) is called a bead of G
represented by the cycle. An h-cycle ofH represents h beads of G.

3. Generating all mincut k-partitions

We have |M| = O(n2) and there are O(n2(k−1)) minimum k-cuts in G [4]. We select them in the case of λk = k λ2 in an
efficientway from the larger set of allO(n2k)many k-subsets ofM. For fixed k, generating theseO(n2k) objects and testing the
mincuts in each of them in O(n) for intersection and cover results in a naive polynomial time algorithm for generatingMk.
We know from experiments [28] that such a straightforward algorithm is not practicable andmore sophistication is needed.

3.1. Exhaustive search

A partial mincut partition (PMP) of V is a set of pairwise disjoint mincuts of G such that their union does not cover V . Our
algorithm systematically enumerates PMPs and tries to extend them to a mincut partition of V with k cells. It can be viewed
as generating a search tree where at the root node no mincut is chosen yet, and where on level `, 1 ≤ ` < k, exactly `
mincuts are in the PMPs considered. The mincut k-partitions are among the leaves on level k.
During the enumeration we repeatedly choose and test mincuts for insertion into a PMP. Of course, it is crucial that only

a small part of the possibilities really has to be explored. To this end we need criteria for excluding branches of the tree
from further consideration and we have to be able to decide quickly whether a mincut considered for insertion into a PMP
intersects with a mincut already in the PMP.
Since partitions are sets, the order of cells is irrelevant. Therefore, let us fix a sequence (Mi) of all mincuts Mi ∈ M and

let i∗ be the highest index of a mincut Mi already contained in a PMP. Then, we only need to consider mincuts Mi of the
sequence with index i > i∗ for insertion into the PMP. The generation algorithm starts by growing a PMP initialized with
{M1}. After having generated all mincut k-partitions containing Mi, but no mincut with index smaller than i, the algorithm
generates all mincut k-partitions containingMi+1, but no mincut with index smaller than i+ 1.
It turns out that the choice of the sequence (Mi) is crucial for efficiency. We sort the mincuts according to non-increasing

size, i.e., (Mi) is a sequence such that |Mr | ≥ |Ms|, for r ≤ s. This sorted sequence allows for an efficient truncation test
and an efficient cactus-based test for intersection of mincuts. Inserting large mincuts early into a PMP quickly covers large
portions of V in a greedy fashion and eliminates many mincuts intersecting with the large ones already chosen.
Let us consider a mincut M for insertion into a PMP. If M is not ruled out by a size-based criterion below, we test if M

intersects with a mincut in the PMP (detailed in Section 5). If we realize that M should not be inserted into the PMP, then
we can skipM .
We give two fast size-based criteria for the truncation of the search tree. Let J be the set of indices of the mincuts in the

current PMP (relative to the fixed sequence (Mi) of mincuts) and let µ denote the minimum size of a mincut in the input
sequence (Mi).
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First, a mincutM ∈M satisfying

|M| +
∑
j∈J

|Mj| + (k− |J| − 1) · µ > n (1)

can be ignored. Because we have to choose (k − |J| − 1) additional mincuts on top of M to grow the current PMP into a
mincut k-partition, the size ofM is too large. Criterion (1) could be strengthened by, for example, replacing (k− |J| − 1) ·µ
with the sum of the sizes of the (k− |J| − 1) smallest mincuts in (Mi).
Second,we can exploit the fact that the sizes of themincuts in the input sequence (Mi) are non-increasing. Let us consider

the mincut Mi′ for insertion into the current PMP. We know that all mincuts with index i > i′ in the sequence have size
|Mi| ≤ |Mi′ |. If

|Mi′ | +
∑
j∈J

|Mj| + (k− |J| − 1) · |Mi′ | < n (2)

then we can ignore Mi′ and all mincuts in (Mi) with index i > i′, since the size of Mi′ is too small. Criterion (2) can be
strengthened by replacing (k−|J|− 1) · |Mi′ |with

∑
i′<i≤i′+k−|J|−1 |Mi|whereMi′ can be ignored if i runs over the end of the

sequence in this sum.

Theorem 1. The algorithm for generating Mk for an n-vertex graph G has time complexity O(n2k+1).

Proof. Let N = |M|. Assume, in the worst case, that we never truncate any branch of the search tree. On level ` of the full
N-ary search tree there are N` nodes. This sums up to 1+N +N2+ · · ·+Nk = O(Nk) = O(n2k) nodes in the full N-ary tree
of height k. For ` > 1 we perform a test for intersection of mincuts to get from a node on level `− 1 to a node on level `. A
brute-force implementation of this test runs in O(n). This sums up to O(n2k+1) in total and dominates the time required for
the construction ofH from G and for building the input sequence of mincuts. �

Remark 2. There are exactly
(
h
k

)
mincut k-partitions containing only mincuts represented by a given h-cycle ofH where

2 ≤ k ≤ h. If h is large and k is neither close to 2 nor close to h, we have combinatorial explosion. Long paths in G consisting
of edges weighted by λ2 result in long cycles inH . In the application of mincut k-partitions to the TSP described below, there
is a natural way to suppress long cycles inH and the proposed algorithm is fast in practice.

3.2. Building the input sequence of mincuts

An explicit sequence of the mincuts of G requires O(n3) space. Using the cactusH , the space requirement for the input
sequence (Mi) can be substantially reduced to O(n2) by describing each mincut by a pair of cactus edges as opposed to an
explicit list of vertices. For double mincuts it is important to take Remark 1 into account. We want to have a double mincut
only once in (Mi). The total space requirement of the generation algorithm forMk (excluding the output) is dominated by
the space requirement of the input sequence (Mi).
To make fast decisions in the algorithm, we need access to the size of every mincut in (Mi) in constant time. Therefore,

in addition to the pair of edges describing a mincut, we store its size. Since the mincut sizes are integral and bounded, the
sequence (Mi) can be sorted in O(n2) time.
We could extract each M ∈ M from H to determine its size. This would amount to O(n3) time. One can do better by

exploiting the structure of M mirrored in the cactus H . Let us assume that we can access the size of each bead of G in
constant time. Then, we can efficiently determine the size of each M ∈ M. Building the input sequence of mincuts takes
O(n2) time and the sizes can be determined along the way without increasing this time complexity.
To achieve this, we scan M in the following order when building the (still unsorted) sequence. The cycles of H are

considered one after the other. For an h-cycle with edges c1, . . . , ch (where head(ci) = tail(ci+1), for 1 ≤ i < h,
and head(ch) = tail(c1)) the mincuts represented by the cycle are considered in the order (c1, c2), (c1, c3), . . . , (c1, ch),
(c2, c3), . . . , (c2, ch), . . . , (ch−1, ch). A complementary mincut (cj, ci) is considered directly after (ci, cj). We may skip some
mincuts of H according to Remark 1. To obtain the size of a mincut (ci, cj), the sizes of the beads between head(ci) and
tail(cj) have to be summed up. The sizes can be updated in constant time when switching from one mincut to the next one.
The cactusH of G has O(n) edges and therefore G has O(n) beads. The sizes of all beads can be determined in O(n2) total

time by extracting the beads fromH . Consequently, we improved from O(n3) to O(n2).

Theorem 2. If the cactusH of G is available, a sequence of all O(n2)mincuts of G, each one described by a pair of directed cactus
edges, together with the sizes of the mincuts, requires O(n2) space and can be computed in O(n2) time—also if the sequence has
to be sorted with respect to mincut sizes.

The beads of G are in 1–1 correspondence with the directed edges ofH and we associate with every edge c ofH the size
of the bead at head(c). We now show that the total time O(n2)mentioned above to determine the sizes of all beads can be
reduced.
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Fig. 2. An algorithm for computing the sizes of all beads of G.

The following algorithm labels every edge c ofH with the size of the bead at head(c) (see Fig. 2).
In this algorithm, the array b storing the bead sizes is global and all other variables are local. As opposed to the brute-

force O(n2) algorithm, the recursive algorithm does not extract the beads of G fromH to compute their sizes. The nodes of
H inducing a mincut of G are exactly the 1-junction nodes. The remaining nodes ofH are cutnodes, i.e., they disconnectH
when removed fromH . Recall that a cutnode may be empty or not.
BecauseH has O(n) edges we obtain the following result.

Theorem 3. The sizes of all beads of G can be computed in time O(n) if the cactusH of G is available.

4. Reducing the length of the input sequence of mincuts

There may be mincutsM ∈ M that do not occur in any mincut k-partition and thus can be ignored. To reduce the space
requirement of the input sequence (Mi) of mincuts and to speed up the generation, we do not admit a mincutM ∈M to the
sequence which cannot be in a mincut k-partition. Further, our generation framework offers the flexibility to be selective
and accept only a subset ofM as mincuts that constitute aK ∈Mk.

4.1. Size-based reduction

If we do not insist on the complete setMk, we can use parameters nmin and nmax to exclude allM ∈ M with |M| < nmin
or |M| > nmax from the sequence (Mi). This allows for the suppression ofK ∈ Mk having cells with unbalanced sizes. A
K ∈ Mk containing an M ∈ M covering most of V can be suppressed by a small nmax. If we insist on the generation of
the complete setMk, we set nmin := 1 and nmax := n. Obviously, the minimum and maximum size of a mincut in the built
sequence of mincuts may be larger than nmin and smaller than nmax, respectively.
After this first pass, it may be possible to drop further mincuts from (Mi). Let smin (smax) be the sum of the sizes of the

(k− 1) smallest (largest) mincuts in the current sequence. AnM ∈ M with |M| + smin > n or |M| + smax < n cannot be in
a mincut k-partition and can therefore be dropped from (Mi).

4.2. Structure-based reduction

As opposed to the criteria above, we now identify mincuts of G that cannot be in a mincut k-partition of G by exploiting
the structure ofM represented byH .

Theorem 4. Let k > 2 and M be a mincut of G described by the edges (ci, cj) of cycle C of the cactusH . If the number of nodes
of H on C between head(cj) and tail(ci) (including head(cj) and tail(ci)) is strictly smaller than (k − 1) and if all these nodes
are non-empty, then M cannot be in a mincut k-partition.

Proof. The situation is visualized in Fig. 3 where the non-empty nodes n1 to nr may be cutnodes (r < k− 1).
(i) M is not a double mincut.
We have to use mincuts described by pairs of edges of C to cover the vertices of G contained in n1 to nr by mincuts of G not
intersecting with M . The cardinality of a mincut partition containing M is maximized by choosing the r beads represented
by C that do not intersect withM . Hence,M cannot be in a mincut τ -partition with τ ≥ k.
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Fig. 3. The location ofM inH forbidsM to be in a mincut k-partition of G.

Fig. 4. An empty cutnode giving rise to anM ∈M that cannot be in aK ∈Mk .

(ii) M is a double mincut.
Then head(ci) = tail(cj) is an empty 2-junction node and the vertices in n1 to nr can be covered byM which can be described
by a pair of cycle edges not belonging to C. We end up with {M,M} ∈ M2. The other way to obtain a mincut partition
containingM is detailed in (i). �

We call a mincut of G described by a pair (ci, cj) of edges of H with tail(ci) = head(cj) a blade of tail(ci). A ν-junction
node ofH has exactly ν blades (ν ≥ 1).

Corollary 5. A blade M ∈M of a non-empty node of H cannot be in a mincut k-partition of G with k > 2.

Theorem 6. If M ∈ M is a blade of an empty ν-junction node of H where ν > k, then M cannot be in a mincut k-partition of
G with k > 2.

Proof. Fig. 4 depicts the situation (ν > k).
Each Mj ∈ M, j = 1, . . . , ν − 1, is a blade of the empty ν-junction node of H . Apart from the unacceptable mincut

2-partition {M,M}, there is no mincut partition containingM with fewer than the ν > kmincutsM1, . . . ,Mν−1,M . �

5. A fast cactus-based test for the intersection of mincuts

In the generation algorithm, a mincut M of G considered for insertion into a PMP of G has to be tested for intersection
with the mincuts already in the PMP. We could keep an n-element array updated which indicates the vertices covered by a
PMP, but the obvious O(|M|) test is too slow in practice. One can do better by using a sorted input sequence (Mi) of mincuts
together withH .
Because intersection tests have to be performed very frequently, tests detecting an intersection after having scanned

through nearly a completemincut are very detrimental to the overall performance. Intuitively, it is desirable to knowwhere
to look in a tested mincut for collisions with a PMP. This section gives an answer.
Keeping Remark 1 inmind, let us denote the uniquemincut ofH inducingM byM ′. Whenever we insert a mincutM into

a PMP, we lock M ′ inH , i.e., we mark the nodes ofM ′ as occupied. We unlockM ′ when we removeM from a PMP or from a
mincut k-partition during backtracking in the search tree.

Lemma 7. If Ma and Mb are two disjoint mincuts of G with Ma ∪ Mb 6= V , then the two mincuts M ′a and M
′

b of H are also
disjoint.
Proof. SinceMa ∩Mb = ∅we know thatM ′a ∩M

′

b can only contain empty nodes and we cannot haveM
′
a ⊂ M

′

b orM
′

b ⊂ M
′
a.

Now, assumeM ′a ∩M
′

b 6= ∅.
If bothM ′a andM

′

b are obtained by removing edges of a given cycleC ofH , then alsoM ′a∩M
′

b can be obtained by removing
two edges of C. However,M ′a ∩M

′

b induces a mincut of G included inMa ∩Mb = ∅ and we have a contradiction.
If, on the other hand, M ′a and M

′

b are obtained by removing edges of different cycles ofH , then, since M
′
a ∩ M

′

b 6= ∅, we
see thatM ′a∪M

′

b covers all nodes ofH . BecauseH is canonical, the only possibility is thatM ′a∩M
′

b consists of a single empty
node andM ′a,M

′

b induce two complimentary double mincutsMa,Mb withMa ∪Mb = V . Again a contradiction is obtained.
Consequently, there is no possibility forM ′a to intersect withM

′

b. �
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IfMa ∩Mb = ∅ butMa ∪Mb = V , thenM ′a andM
′

b may intersect. This happens exactly in the situation whereMa andMb
are complementary double mincuts, i.e., whenMa andMb are the two blades of an empty 2-junction node.
AmincutM ′ inducingM may be smaller (cactus nodes can contain several vertices) or larger (cactus nodes can be empty)

thanM . We show that we can focus on a 1- or 2-element subset ofM ′ if we want to test whetherM intersects with a mincut
in a PMP. Let M be described by the pair (ci, cj) of cycle edges ofH . We call the subset {head(ci), tail(cj)} of M ′ the anchor
ofM and denote it by A(M). For example, in Fig. 1, we have A({4, 18}) = {head(c3)}.

Theorem 8. Let {Mj ∈ M | j ∈ J} be a PMP of G and let exactly the pairwise disjoint mincuts M ′j , j ∈ J , of H be locked in the
cactusH of G. Let M be a mincut of G with |M| ≤ |Mj| and M ∪Mj 6= V for j ∈ J . Then M intersects with some Mj, j ∈ J , in the
PMP if and only if A(M) contains a locked node of H .

Proof. Since, due to its definition, a PMPdoes not coverV , Lemma7 implies that the cutsM ′j are indeed pairwise disjoint. The
requirementM∪Mj 6= V excludes the situationwhere the PMP consists of a single doublemincut havingM as complement.
The claimed equivalence does not hold in this situation. Let us prove both directions.
Let j0 ∈ J be such thatM ∩Mj0 6= ∅. We see thatM

′
∩M ′j0 contains a non-empty node ofH . There are the following three

cases.
(1) IfM ′ ⊂ M ′j0 , then A(M) ⊂ M

′ obviously contains a locked node.
(2) If M ′j0 ⊂ M

′, then |Mj0 | ≤ |M|. Since also |M| ≤ |Mj0 |, we have M = Mj0 and therefore M
′
= M ′j0 so that A(M) ⊂ M

′

contains a locked node.
(3) If neither of the two mincutsM ′ andM ′j0 is included in the other, then, sinceM ∪ Mj0 6= V , it is impossible thatM

′ and
M ′j0 are obtained by removing edges of different cycles of H . Therefore, M and Mj0 are represented by the same cycle
C ofH and M ∩ Mj0 6= ∅ is a mincut (induced by M

′
∩ M ′j0 ) represented by C. We see that A(M) contains a node on C

locked byM ′j0 .

Now let j0 ∈ J be such that A(M)∩M ′j0 6= ∅. We show thatM intersects withMj0 . We haveM ∪Mj0 6= V . IfM ∩Mj0 = ∅
then by Lemma 7 M ′ ∩ M ′j0 = ∅ and, as A(M) ⊂ M

′, also A(M) ∩ M ′j0 = ∅. This is a contradiction, and hence M and Mj0
intersect. �

That is, after having checked the small anchor A(M) with |A(M)| ∈ {1, 2} in constant time, we know for sure whether
the usually much larger mincut M intersects with a mincut which is already in the PMP. Theorem 8 is a major reason why
our algorithm for generatingMk is efficient. We improved on the obvious O(|M|) test for intersection and ended up with an
O(1) test.
The requirement M ∪ Mj 6= V in Theorem 8 is no restriction for us since we are not interested in generating mincut

2-partitions (they could easily be extracted fromH). AnMwithM∪Mj = V would be ruled out by the size-based criterion (1)
before a test for intersection is performed. Note the importance of |M| ≤ |Mj|which holds in our algorithm due to the sorted
sequence (Mi).
There is more to the fast test for intersection than only using a sorted input sequence (Mi). An M ∈ M described by

(ci, cj) is a union of pairwise disjoint beads. If we walk throughM ′ inH via depth-first-search starting at head(ci), we may
dive into a large bead building upM which does not intersect with a PMP.Wemay detect an intersection only after we have
switched to a further bead building up M . Traversing M ′ via breadth-first-search or walking along the cycle from head(ci)
to tail(cj) is an improvement, but directly checking A(M) = {head(ci), tail(cj)} ⊂ M ′ in constant time is the best we can do.

6. Efficiency of the generation algorithm in practice

We report about computational results demonstrating the efficiency of our algorithm in practice. We implemented the
algorithm in C and used the compiler gcc version 3.3with optimization option -O3. All computational results reported in
this paper were obtained on a Linux PC with a single 2800 MHz Intel Pentium 4 processor and 4 GByte main memory.
Table 1 provides data for test graphs produced by a branch-and-cut algorithm for the TSP. They are equal to the graphs

in Table 2 (see Section 9 for details on their origin). The number of vertices and edges of the graphs are listed. The set of
double mincuts of G is denoted by D ⊂ M. Cactus construction times are given in CPU seconds where tWH and t

F
H are the

times required by Wenger’s [27] and Fleischer’s [23] algorithm, respectively. The number of cycles (including 2-cycles) of
the cacti (#C), the maximum length of a cycle (hmax), and the number of empty nodes (#∅) are listed. We denote the length
(after reduction) of the input sequence (Mi) of mincuts by `k. The generation ofMk took tk CPU seconds where tk includes
building the input sequence of mincuts and the exhaustive search, but not the cactus construction.
The test graphs are sparse. Their number of mincuts is large for the relatively short cycles of the cacti and doublemincuts

appear frequently. The cactus construction algorithm of Fleischer [23] is slower than the one of Wenger [27], but works for
more general graphs. We report results for the range k = 6, . . . , 30. The rationale will become clear in the sections below.
The length `k of the input sequence is provided for the extreme values k = 6 and k = 30. We have `k < |M| for G1 to
G8. Roughly speaking, tk tends to increase with increasing n and k, but much slower than the time complexity O(n2k+1) in
Theorem 1 suggests. The test graphs have a large number of mincut k-partitions.
Note that, for the test graphs, a minimum k-cut algorithm would return a single element of Mk. To the best of our

knowledge, the only deterministic minimum k-cut algorithm for k > 6 is due to Goldschmidt and Hochbaum [5] and
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Table 1
Computation of all mincut k-partitions of graphs.

G1 G2 G3 G4 G5 G6 G7 G8

n 50 91 190 402 566 3724 4190 5178
m 83 152 324 676 959 6231 6854 8493
|M| 190 304 650 1412 1808 12202 13466 16438
|D| 8 32 48 102 66 662 774 946

tWH <0.01 <0.01 0.01 0.01 0.02 0.35 0.43 0.66
tFH 0.01 0.01 0.15 0.07 0.14 10.15 13.21 20.40
#C 35 65 131 294 396 2475 2759 3423
hmax 6 4 5 8 6 9 8 6
#∅ 14 25 44 94 83 624 674 820

`6 118 141 309 693 775 5421 5742 6834
`30 92 155 337 681 786 5425 5643 6731

t6 <0.01 <0.01 <0.01 0.01 0.01 0.43 0.48 0.67
t7 <0.01 <0.01 <0.01 0.01 0.01 0.44 0.45 0.62
t8 <0.01 <0.01 <0.01 0.01 0.01 0.40 0.41 0.54
t9 <0.01 <0.01 <0.01 0.01 0.01 0.43 0.38 0.51
t10 <0.01 <0.01 <0.01 0.01 0.01 0.52 0.35 0.50
t15 0.04 0.01 0.04 0.03 0.03 2.87 0.72 1.17
t20 0.53 0.35 1.15 0.24 0.33 48.16 6.97 12.42
t25 2.22 5.65 41.54 1.65 1.46 2349.70 106.93 136.55
t30 3.51 171.76 2821.34 98.37 2.39 82035.86 5561.97 2873.42

|M6| 92 23 110 415 230 1584 1344 1304
|M7| 160 35 154 503 270 1865 1606 1569
|M8| 299 48 230 593 324 2387 1958 1864
|M9| 517 62 337 659 420 3324 2390 2253
|M10| 848 86 470 718 547 4731 2875 2749
|M15| 8341 1062 2984 1118 1845 28045 7778 8965
|M20| 62957 15057 55471 8397 5366 167647 70832 57956
|M25| 328016 168030 578757 48068 46288 2135525 538886 550916
|M30| 986938 1241266 5632322 203597 108378 34942944 4047932 5103056

Table 2
Mincut k-partitions for TSP support graphs.

Name G1 G2 G3 G4 G5 G6 G7 G8
gr120 lin318 att532 pr1002 pr2392 usa13509 d15112 d18512

`′6 118 92 216 478 456 3224 3293 3979
`′30 92 155 337 616 628 4286 4010 4721

t ′6 <0.01 <0.01 <0.01 <0.01 <0.01 0.33 0.40 0.58
t ′7 <0.01 <0.01 <0.01 <0.01 <0.01 0.30 0.39 0.54
t ′8 <0.01 <0.01 <0.01 <0.01 <0.01 0.29 0.35 0.46
t ′9 <0.01 <0.01 <0.01 <0.01 <0.01 0.31 0.31 0.43
t ′10 <0.01 <0.01 <0.01 <0.01 <0.01 0.34 0.30 0.39
t ′15 0.04 0.01 0.03 0.02 0.02 1.48 0.54 0.92
t ′20 0.53 0.35 1.05 0.23 0.29 24.63 5.48 10.97
t ′25 2.28 5.86 39.65 1.60 1.30 1051.56 94.41 120.60
t ′30 3.40 175.42 2694.55 79.35 2.05 33430.70 3435.61 2758.23

|M′6| 55 20 79 176 124 975 987 1102
|M′7| 100 31 109 177 127 1175 1096 1283
|M′8| 178 43 165 200 173 1526 1349 1488
|M′9| 283 56 237 257 240 1951 1707 1737
|M′10| 478 81 331 322 331 2535 2107 2052
|M′15| 5829 948 2349 772 1106 12913 5966 7117
|M′20| 47354 13052 36756 6394 4173 84931 53921 49479
|M′25| 251093 145949 368150 39282 35387 847946 409578 439153
|M′30| 763634 1076808 4004798 182606 79486 11134216 3156787 3871092

requires O(nk
2/2−3k/2+4)minimum (s, t)-cut computations. Therefore, our algorithmworks for much larger k than nearly all

minimum k-cut algorithms and can generate the complete setMk, for k > 6.
To enlarge the test bed, we experimentedwith random graphsG of the type described in Nagamochi et al. [29] and Jünger

et al. [2] where these graphs served in computational studies assessing mincut algorithms. Apart from very rare exceptions,
we have |M| = 2 for such a graph—whatever parameter settings determining some graph properties are used. That is, the
cactusH consists of exactly 2 nodes joined by a single 2-cycle so that |M2| = 1 andMk = ∅ for k > 2.
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7. Application to the traveling salesman problem

We now describe how mincut k-partitions can be applied in the branch-and-cut approach to the TSP. We only give a
sketch of this approach here and refer to [30] for a detailed description.
Let G = (Vn, En, c) be the complete undirected graph with n nodes and edge weights ce, for every edge e ∈ En. The

traveling salesman problem (TSP) consists of finding a simple cycle containing every node (a so-called tour) such that the
sum of its edge weights is as small as possible.
The TSP is a classical combinatorial optimization problem and it is NP-hard. With binary variables xe stating whether

edge e is in the tour or not, the TSP can be formulated as linear 0/1 program as follows.

min
∑
e∈En

cexe

x(δ(v)) = 2, for all v ∈ Vn,
x(δ(S)) ≥ 2, for all S ⊂ Vn, |S| ≥ 3, |S| ≤ n− 2,
xe ∈ {0, 1}, for all e ∈ En.

Here δ(S) denotes the set of edges with exactly one end in a cut S (δ(v) being the abbreviation for δ({v})) and x(F) stands
for
∑
e∈F xe, for an edge set F . The equations x(δ(v)) = 2 are called degree constraints and the inequalities x(δ(S)) ≥ 2 are

called subtour elimination constraints.
The traveling salesman polytope STSP(n) is defined as the convex hull of all feasible solutions of this integer program,

or seen differently, of the characteristic 0/1-vectors of tours in the complete graph. Theoretically the TSP now amounts
to minimizing the (linear) weight function c over STSP(n). To this end a description of STSP(n) with linear equations and
inequalities is needed. There has been a lot of research on this polyhedral description and many classes of inequalities have
been found. Most of them, however, are too complicated to be used in practice.
The branch-and-cut approachworkswith linear relaxations of STSP(n). A basic relaxation, the so-called subtour relaxation

is obtained by replacing xe ∈ {0, 1} by 0 ≤ xe ≤ 1 in the above IP and provides a lower bound on the minimum tour length.
Usually the optimum solution of this linear program will be fractional. A simple branch-and-bound algorithm would now
split the problem into subproblems, e.g., by fixing variables to 0 or 1, and proceed this way. In contrast, branch-and-cut tries
to first strengthen the LP relaxation by adding further inequalities which are known to be valid for STSP(n).
The characteristic situation in branch-and-cut is that the current LP relaxation has been solved giving a non-integral

solution x∗. For strengthening the relaxation the so-called separation problem has to be addressed now. It consists of finding a
linear inequality which is violated by x∗, but satisfied by all points of STSP(n). Separation algorithms identify such inequalities
and, by adding them to the LP, improve the relaxation. Since STSP(n) is not known completely, itmay be the case that no such
separating inequality can be found and one has to resort to some kind of branch-and-bound. The success of a branch-and-cut
approach heavily depends on the possibilities to generate violated inequalities before having to start to branch.
Note that, despite the exponential number of inequalities, the subtour relaxation is polynomially solvable via the ellipsoid

method. In practice, however, it is solved very efficiently in short time and for large problem instances by generating subtour
constraints in a cutting-plane fashion and by using the simplex algorithm for optimizing the linear programs.
Wewill show that our algorithmcan give an interesting contribution to solving the separation problem for large problems

where standard separation algorithms might be too time-consuming to be applicable in practice. Here an approach comes
into play which allows for using mincut k-partitions. The idea is to ‘‘shrink’’ the current x∗ to a significantly smaller x̄
representing the relevant properties of x∗, search separating inequalities for x̄ and ‘‘lift’’ them back to the original problem.
So assume that the following situation is given. The current relaxation has been solved and x∗ is its optimum solution.

The fractional vector x∗ defines the TSP support graph G = (V , E, w)where V = Vn, E = {e ∈ En | x∗e > 0}, andwe = x
∗
e , for

e ∈ E. We assume that all linear constraints of the IP formulation, i.e., the so-called degree equations and subtour elimination
constraints are satisfied. So, in a TSP support graph every vertex v is a mincut of weight 2 because w(δ(v)) = 2 and every
cut S ⊂ V has weightw(δ(S)) ≥ 2.
Let S, T ⊂ V be disjoint cuts. We denote the set of edges with one end in S and one in T by (S : T ) and abbreviate

w((S : T )) to w(S : T ). To shrink a cut S ⊂ V we remove S and δ(S), add a new vertex s replacing S, and for all v ∈ V \ S
with w(S : {v}) > 0 introduce a new edge {s, v} with weight w(S : {v}). Shrinking a cut S in G results in a graph denoted
by G/S. If S is a collection of pairwise disjoint cuts in G, then the graph obtained by shrinking these cuts is denoted by G/S.
Shrinking a mincut k-partitionK ∈Mk results in a k-vertex graph G/K.
We require the concept of safe shrinking due to Padberg and Rinaldi [31]. In [31] sufficient conditions for 1- and

2-shrinkability are given where all involved sets S and T are mincuts.
A cut S ⊂ V in an n-vertex TSP support graphG is called 1-shrinkable if theweight vector ofG/S is outside STSP(n−|S|+1)

given that the weight vector of G is outside STSP(n), i.e., S is 1-shrinkable if there is a TSP cutting-plane after shrinking S
given that there was one before.
Analogously, a pair S = {S, T } of disjoint cuts in G is called 2-shrinkable if there is a TSP cutting-plane for G/S given that

there is one for G.
Repeatedly shrinking 1-shrinkable sets and 2-shrinkable pairs is widely applied to reduce redundancy in TSP support

graphs. Cuts computed for a shrunk graph are lifted to the original space. We could shrink any PMP or mincut partition in a



10 G. Reinelt, K.M. Wenger / Discrete Optimization 7 (2010) 1–12

TSP support graph to obtain a smaller TSP support graph. This shrinking is not necessarily safe, i.e., the weight vector may
move inside the TSP polytope corresponding to the small graph.
The two separation methods below require small shrunk graphs. The required number of vertices usually cannot be

reached by safe shrinking alone. In both methods k-cuts in a support graph are shrunk to obtain small k-vertex graphs.
In the small instance relaxation (SIR)method [38], linear descriptions of polytopes associatedwith small problem instances

are scanned in search for inequalities violated by x∗ where x∗ is the weight of a small k-vertex graph. The linear description
of STSP(k) by inequalities is trivial for k < 6 and not completely known for k > 10. For the SIR method described in [32,33]
the range of k is 6 to 10.
The local cut method of Applegate et al. [34,35] tries to compute a cutting-plane separating a vector x∗ from STSP(k) by

applying linear programming and polyhedral theory where k ranges from 6 to about 30 or 40.
Both methods search for cuts of the form f T x ≥ f0 with f ≥ 0 (called tight-triangular form in [36]). To violate f T x ≥ f0

by x∗ it is advantageous to have a low total weight
∑
x∗e . The lowest possible total weight in a k-vertex graph obtained

from a TSP support graph is achieved by shrinking a mincut k-partition. In this sense mincut k-partitions are the ideal k-
cuts to be shrunk. (Neither of the two methods relies on x∗ being the weight vector of a TSP support graph.) Shrinking a
mincut k-partition is not always safe, therefore we trymany of them. In our experiments they were indeed superior to other
k-cuts [33].

8. The generation in the TSP case

A TSP support graph emerging in a branch-and-cut run usually has numerous mincut k-partitions. To keep the number
manageable, we apply safe shrinking before we start generating mincut k-partitions. In [31] the following sufficient
condition for 1-shrinkability is proven.

Theorem 9. Let G = (V , E, w) be a TSP support graph and S ⊂ V a mincut with 2 ≤ |S| ≤ |V | − 2. Let t ∈ V \ S with
w({t} : S) = 1 and W := V \ (S ∪ {t}). If the weight vector of G/W is in STSP (|V | − |W | + 1), then S is 1-shrinkable.

We call an edge having weight 1 a 1-edge. A 1-path in a TSP support graph is an inclusionwise maximal simple path
consisting of 1-edges not spanning V . Using Theorem 9 we see that 1-paths can safely be shrunk to single 1-edges by
repeatedly shrinking 1-edges. This is important since 1-paths in G form cycle segments inH and long cycles inH result in
an exploding number of mincut k-partitions.
All sets S with 2 ≤ |S| ≤ 3 and the property that there is a t ∈ V \ S withw({t} : S) = 1 are 1-shrinkable. The condition

in Theorem 9 is automatically satisfied and such a set S can be detected by simple means. In the literature, larger sets S
are not shrunk. They are harder to find and checking the condition is time-consuming. We note that all candidates S for
Theorem 9 can be extracted from the cactus by scanning its cycles for beads {t}. For an h-cycle ofH with h ≥ 3, the weight
in G between consecutive beads ofH is 1 and between non-consecutive beads it is 0 (from Lemma 10). For 4 ≤ |S| ≤ 7 the
condition can, e.g., be checked by scanning the known complete linear descriptions of STSP(k) for 6 ≤ k ≤ 9. Considering S
with 4 ≤ |S| ≤ 7 usually leads to a slight further reduction compared to only shrinking S with 2 ≤ |S| ≤ 3, see [33].
A 1-square in a support graph is a pair {S, T } of 1-edges with w(S : T ) > 0. A 1-edge in a TSP support graph is a mincut.

To reduce redundancy further, we also shrink all 2-shrinkable 1-squares satisfying the sufficient condition of [31] and note
that candidates can be detected using the cactus.
When we generateMk for a TSP support graph G, we assume that no further S with 2 ≤ |S| ≤ 3 or 1-square can safely

be shrunk as described above.
Safe shrinking can help in a further way to suppress undesirableK ∈Mk. In a TSP branch-and-cut context we start with

k = 6. Only if the k-vertex support graphs obtainable by shrinking mincut k-partitions in G have been processed, we move
on to the next higher k. Let us be satisfied with some instead of all cutting-planes per k-vertex graph G<. Assume that G<
can be safely shrunk to G�. If there is a cutting-plane for G<, then also for G�.
The graph G< can be ignored if some kind of safe shrinking is applicable:

(i) If G� has less than 6 vertices, then there is neither a cutting-plane for G� nor for G< (degree equations and variable
bounds remain satisfied when mincuts are shrunk in TSP support graphs). G< can therefore be ignored.

(ii) If G� has at least 6 vertices, then we may be able to find cutting-planes for G�. However, for G� cutting-planes have
already been searched since G� has already been processed earlier. Therefore, G< can be ignored.

We speed up the generation ofmincut k-partitions by skipping exactly thoseK ∈Mk yielding graphs G< = G/K having
a 1-path of length at least 2.
First, our algorithm can be modified such that it backtracks as soon as three pairwise disjoint and consecutive mincuts

represented by the same cycle would be chosen. This would result in a 1-path of length at least 2 in G<. In particular, this
skipsK ∈Mk resulting in a tour when shrunk. (G/K is a tour if allM ∈ K are represented by the same cycle ofH .) Second,
the following theorem shows how the input sequence (Mi) of mincuts can be reduced further in the TSP case.
Two cuts in G are said to cross if they intersect, neither of the two is included in the other, and their union does not cover

V . We will use a well-known result on crossing cuts.

Lemma 10. If A, B ∈M cross in G, then the following holds.
(i) M1 := A ∩ B,M2 := A ∩ B,M3 := A ∩ B, and M4 := A ∪ B are mincuts.
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Fig. 5. Shrinking aK ∈Mk withM ∈ K produces a 1-path of length at least 2.

(ii) w(M1 : M3) = w(M2 : M4) = 0.
(iii) w(M1 : M2) = w(M2 : M3) = w(M3 : M4) = w(M4 : M1) = λ

2 .

Theorem 11. Let k > 2 and M be a mincut of the TSP support graph G described by the pair (ci, cj) of edges of H . Let
tail(ci) 6= head(cj) and tail(ci) be either non-empty or an empty ν-junction node with ν > k − 1. Let the same be true for
head(cj). Then G/K has a 1-path of length at least 2 for every mincut k-partitionK ∈Mk containing M.

Proof. Fig. 5 depicts an exemplary situation. Let M ∈ K ∈ Mk. Since k > 2, the mincut of G described by (cj, ci) covering
M cannot be inK .
If head(cj) is non-empty, then we have to cover the vertices of G contained in head(cj) by a mincutM j of G described by

cj and a further edge c ′j 6= ci of cycle C. The other mincuts covering the vertices in head(cj) intersect withM .
Now assume that head(cj) is an empty ν-junction node with ν > k− 1. Let B ∈ M be the bead represented by C at the

head of cj. We could cover B by a mincut (cj, c ′j ). If we want to cover B by other mincuts not intersecting withM , we need at
least ν − 1 of them, as they correspond to the ν − 1 blades of head(cj) not intersecting with M . In addition to these ν − 1
mincuts, we also haveM inK and at least one more mincut since tail(ci) 6= head(cj). Since ν + 1 > k, we have to cover B
by a mincut (cj, c ′j )which we denote byM

j.
For tail(ci) the argument is analogous. We have to cover the bead of G at the tail of ci by a mincut (c ′i , ci) denoted byM

i

where c ′i follows c
′

j on C.
The two mincuts (c ′i , cj) and (ci, c

′

j ) cross in G. Using Lemma 10 we obtain w(M
i
: M) = w(M : M j) = λ

2 = 1 and G/K
contains a 1-path of length at least 2. The vertex resulting from shrinkingM is an inner vertex of the 1-path. �

The cutnodes of cacti of TSP support graphs are empty. They are often ν-junction nodes with ν > k and Theorem 6
excludes many mincuts from (Mi).

9. Computational results for the TSP

The test graphs G1 to G8 in Table 2 are the same graphs as in Table 1. They are TSP support graphs obtained at the root
node of the branch-and-cut tree for problem instances from the TSP benchmark library TSPLIB ([37]). Subtour elimination
constraints have been separated exactly and in addition simple comb inequalities [31] heuristically. All 1-shrinkable sets S
with 2 ≤ |S| ≤ 3 and 2-shrinkable 1-squares satisfying the sufficient conditions in [31] have recursively been shrunk to
obtain Gi.
The figures in Table 2 are for the generation algorithm which skips exactly the mincut k-partitions yielding a shrunk

graph with a 1-path of length 2 or longer (compare Section 8). Due to Theorem 11, the length `′k of the input sequence (Mi)
is smaller than `k in Table 1. In theory, `′k can be quadratic in n. In practice, `

′

k seems to be linear in n for safely shrunk
graphs. The generation times t ′k of the algorithm modified for the TSP skipping some undesirable partitions are, due to the
added backtracking criterion, sometimes slightly higher than tk in Table 1, but usually clearly smaller. We haveM′k ⊂ Mk.
No time-consuming separation algorithm has to be called for a small k-vertex graph corresponding to a mincut k-partition
inMk \M′k. The range of mincut 30-partitions generated per second was 333 for G6 to 224,598 for G1.
By applying all criteria for safe shrinking, many of the small k-vertex graphs corresponding toM′k can be skipped instead

of calling separation algorithms for them. The saved separation time usually outweighs the time required for checking safe
shrinkability by far.

Remark 3. If there is a candidate for a 1-shrinkable set S of any size in Theorem 9, then there is a 1-shrinkable set. If S is not
1-shrinkable, thenW is. We do not have to check whether a weight vector is in the TSP polytope.

In a TSP support graph, a mincut k-partition usually contains mincuts of size 1, i.e., if we exclude all mincuts of size 1
from the input sequence (Mi), only very few mincut k-partitions are found.
This paper suggests an algorithm for generating the set of all partitions of the vertex set of a graph with positive edge

weights into a fixed number k of globally minimum weight cuts. It is an exhaustive search algorithm in which the cactus
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representation of mincuts helps in several ways to make the search time and space efficient. For fixed k, the running time
is polynomial in the number of vertices. But, more importantly, the algorithm is efficient in practice which is demonstrated
by computational results.
It was also shownhowmincut k-partitions can help in the small instance relaxation and local cutmethods to find cutting-

planes for the TSP. In both methods many k-cuts in support graphs are shrunk and in some sense mincut k-partitions are
the ideal k-cuts. For TSP support graphs, the desirable mincut k-partitions can be generated particularly fast.
Minimum and near-minimum k-cuts are generalizations of mincut k-partitions. An efficient deterministic generation of

such k-cuts remains a challenge.
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