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Abstract

The determination of true optimum solutions of combinatorial optimization problems is

seldomly required in practical applications. The majority of users of optimization software

would be satis�ed with solutions of guaranteed quality in the sense that it can be proven

that the given solution is at most a few percent o� an optimum solution. This paper

presents a general framework for practical problem solving with emphasis on this aspect.

A detailed discussion along with a report about extensive computational experiments is

given for the traveling salesman problem.



Recent research in algorithm design for hard combinatorial optimization problems follows

two trends. One aims at a continuously better understanding of structural properties of a

given problem in the pursuit of solving larger instances to optimality. For a few prominent

hard combinatorial optimization problems such as the traveling salesman problem (TSP),

the linear ordering problem or the max-cut problem, branch & cut algorithms are clearly

the state-of-the-art. Every few years, increasingly larger instances are solved. For example,

the largest (reasonable, non-random) solved instance of the TSP (in this paper we denote

by TSP always the symmetric traveling salesman problem) was 49 in 1954 (Dantzig,

Fulkerson and Johnson (1954)), 120 in 1977 (Gr

�

otschel (1977, 1980)), 318 in 1980

(Crowder and Padberg (1980)), 666 in 1988 (Gr

�

otschel and Holland (1991)), 2392

in 1988 (Padberg and Rinaldi (1991)) and 3038 in 1992 (Applegate, Bixby, Chv�atal and

Cook (personal communications, 1992)). However, in all cases, enormous amounts of com-

puter time (in view of the available hardware and software technology of the respective

time) had to be invested. The operations researcher who is interested in practical prob-

lem solving correctly criticizes the described algorithms as impractical, even more, since

none of the above mentioned published results indicates the solvability of all or, at least,

most instances of similar size. Consequently, a second trend evolved, aiming at �nding

reasonably good solutions for large instances within given computation time bounds. The

quality of the solutions of the proposed heuristics can be determined in several ways. For

demonstration, we again use the traveling salesman problem. One way consists of proving

that the solution is never worse than a �xed fraction of an optimum solution. In the case

of the Euclidean traveling salesman problem, where all cities have Cartesian coordinates

and the length of a connection is the Euclidean distance between the two connected cities,

Christofides (1976) gave a heuristic which produces a tour whose length is at most 1.5

times as long as an optimum one. Unfortunately, results like this, although theoretically

appealing, are of little practical value since the guaranteed quality is poor. On the other

hand, many good heuristics have been developed which can compute very high quality

solutions for large real world instances, such as the heuristic by Lin and Kerninghan

(1973), yet the quality of their solutions cannot be assessed directly. Instead, sophisti-

cated methods for obtaining good lower bounds on the length of a tour must be applied

to demonstrate their good performance in each case. For a survey of such methods, see

Johnson (1990), Bentley (1991), Reinelt (1992).

This paper is an attempt to combine the two trends in one algorithmic framework,

which produces a sequence of increasingly shorter tours and increasingly better lower

bounds on the length of an optimum tour, such that a user interested in the solution

of a prespeci�ed guarantee can stop the computational process as soon as he is satis�ed

with a guarantee of the kind: \The currently best known tour is at most p% longer than

the shortest one". We would like to demonstrate that a branch & cut algorithm enhanced

with good heuristics for constructing and improving tours guided by structural information

produced in the \ordinary" branch & cut part of the algorithm can achieve this goal.

We believe that the only way to substantiate a claim like ours is to give a detailed
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description of the implemented computer program, to provide convincing computational

results on problem instances of the general accessible TSPLIB (Reinelt (1991a, 1991b)),

and to show the limitations of the proposed approach as well by explaining why we cannot

solve all of the library problems satisfactorily.

Section 1 gives a general outline of our extended notion of the branch & cut algorithm

as indicated above, section 2 gives details of our implementation for the traveling sales-

man problem, and section 3 describes computational experiments with various parameter

settings.

We would like to close this introduction with some disclaimers. We do not believe that

the proposed method is good for all, or even many, combinatorial optimization problems.

The structural properties of most combinatorial optimization problems arising in practical

applications are much too complicated for such an approach. It seems that due to our lim-

ited knowledge such problems are, at least at present, in practice much better approached

by heuristic methods and algorithms which simulate biological and physical phenomena,

such as genetic or evolutionary algorithms or simulated annealing. In such cases one often

has to drop the requirement of a provable guarantee. The traveling salesman problem

belongs to a few problems for which enough structural knowledge is available to justify

the branch & cut approach. Other combinatorial optimization problems are too \easy",

e.g., combinatorial algorithms such as Edmonds' algorithm for the matching problem (Ed-

monds (1965)) clearly outperform approaches like ours in practice (Derigs and Metz

(1991), Applegate and Cook (personal communications, 1991)).

Although we deal with a branch & cut algorithm for the TSP, we do not explain details

of the facial structure of the TSP polytope nor give new separation algorithms. For this, we

refer to the paper of Padberg and Rinaldi (1990), and the survey by J

�

unger, Reinelt

and Rinaldi (1992). The fact that our separation routines are not as sophisticated as

those by Padberg and Rinaldi is the reason that we cannot solve as large instances to

optimality as they can. As explained above, our emphasis is a di�erent one. Also, we do

not explain linear programming terminology which can be found in, e.g., Chvatal (1983),

Nemhauser and Wolsey (1988).

This paper gives �rst results of a large project of implementing and evaluating branch

& cut type algorithms for well-studied, hard, but not too hard, combinatorial optimization

problems such as max-cut, linear ordering, sequential ordering, maximum planar subgraph,

etc., on conventional single processor and multi-processor computer systems.

1 Branch & cut

The branch & cut approach to combinatorial optimization problems is a variant of the

branch & bound approach. The latter is so well known that we can omit a formal de�nition

here. Instead we will outline the general scheme and use the example of the traveling

salesman problem to summarize the re�nements that lead to our notion of the branch
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& cut approach. The owchart of Figure 1 gives the basic control structure of a branch

& bound algorithm for a combinatorial optimization problem with an objective function

which is to be minimized.

COMPUTE  
LOCAL LOWER

BOUND llb
AND 

GLOBAL UPPER
BOUND gub

START

OUTPUT

STOP

gub > llb

feasible BRANCH

SELECT
n

y

FATHOM
n

y

n

INITIALIZE

y

list empty

Figure 1. Flowchart of a branch & bound algorithm.

A branch & bound algorithm maintains a list of subproblems of the original problem

whose union of feasible solutions contains all feasible solutions of the original problem.

This list is initialized with the original problem itself.

In each major iteration step the algorithm selects a current subproblem from this list

and tries to \solve" it in either of the following ways: a lower bound for the value of an

optimum solution of the current problem is derived that is at least as high as the value of

the best feasible solution found so far, or it is shown that the subproblem does not contain

any feasible solution, or the current subproblem is solved to optimality. If the current

subproblem cannot be \fathomed" according to one of these criteria, then it is split into

new subproblems whose union of feasible solutions contains all feasible solutions of the

current problem. These newly generated problems are added to the list of subproblems.

This iteration process is performed until the list of subproblems to be fathomed is empty.

The crucial part of a successful branch & bound algorithm is the computation of

lower bounds. Here one uses the fundamental concept of relaxation. A relaxation of a

combinatorial minimization problem is another minimization problem whose set of feasi-

ble solutions includes the feasible solutions of the original problem and assigns the same

objective function values to them. Hence solving the relaxed problem gives a lower bound

on the optimum objective function value of the problem it was derived from. The tighter

the relaxation, the better this bound will be.
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We introduce some terminology concerning lower bounds (derived from solving relax-

ations) and upper bounds (obtained by �nding feasible solutions). We call a lower bound

local, if it is only valid for a subproblem, and global, if it is a bound for the original

problem. By solving a relaxation of the current problem we obtain a local lower bound

llb for the objective function value of the original problem. It is also a global lower

bound glb when this is done the �rst time for the initial relaxation and also later in

the computation under certain conditions, which we outline in section 2. If the solution

found for the relaxation happens to be feasible for the original problem (in which case it is

also the optimum solution of the subproblem) and has lower objective function value than

any feasible solution found so far, it is memorized and the global upper bound gub for

the objective function value is decreased accordingly. If the global upper bound does not

exceed the local lower bound, the current subproblem is fathomed.

If the global upper bound exceeds the local lower bound and no feasible solution was

found for the current problem, we perform a branching step which consists of adding to the

list a collection of new subproblems whose union of feasible solutions contains all feasible

solutions of the current problem. The simplest branching rule consists of de�ning two

new subproblems in one of which a �xed edge is required to be in the solution and in the

other forbidden to be in the solution. More elaborate branching rules and selection rules

can be found in the general survey of Balas and Toth (1985).

If the list of subproblems to be fathomed becomes empty, then the memorized feasible

solution whose objective function value is equal to the global upper bound can be output

as the optimum solution.

It is important to note, that during the execution of a branch & bound algorithm

a sequence of feasible solutions of decreasing lengths and a sequence of lower bounds of

increasing values is produced. The algorithm terminates with the optimum solution as

soon as the best lower bound coincides with the value of the best feasible solution found.

If we take the point of view that practical problem solving consists of producing a solution

whose objective function value exceeds the objective function value of an optimum solution

by at most g%, then a branch & bound algorithm can achieve this goal if it stops as soon

as it has found a feasible solution of value gub and global lower bound glb such that

gub�glb

glb

� 100 � g.

Essential in the design of a branch & bound algorithm is the choice of suitable relax-

ations to make bounding e�cient. A popular variant for the traveling salesman problem,

which has been elaborated in many subsequent publications, is described in Held and

Karp (1971). They use the 1-tree-relaxation. A 1-tree in a graph G = (V;E) with

V = 1; 2; : : : ; n consists of the edges of a spanning tree on the node set 2; : : : ; n plus two

more edges incident to node 1. Minimum length 1-trees are easily computed, and any tour

is clearly a special 1-tree. However, using 1-trees directly as a relaxation turns out to yield

poor bounds. Instead, a strengthening is used which essentially amounts to the repeated

computation of 1-trees in a Lagrangian relaxation framework.

In fact, Christofides (1979) and Volgenant and Jonker (1982) report lower
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bounds of about 99% on randomly generated problems. However, this does not carry over

to real world problems and the \poor bound" we get by this procedure is probably the

reason why 1-tree based branch & bound computer codes cannot compete with cutting

plane based branch & bound codes, which we will discuss below.

To complete this quick survey on branch & bound algorithms, we mention a branch

& bound algorithm that uses the 2-matching relaxation and has been implemented

by Miller, Pekny and Thompson (1991), and a lower bound based on an additive

bounding procedure proposed by Carpaneto, Fischetti and Toth (1989). However,

for these relaxations, no convincing results on non-random problems have been published.

The quality of the bounds obtained by solving the relaxed subproblems are essential for

the performance of the algorithm where computation can amount to the almost complete

enumeration with poor bounds in one extreme or the consideration of only a few or even

only one subproblem in the other extreme. Published computational results show that the

latter is best approached by using linear programming relaxations (LP-relaxations).

Let K

n

= (V

n

; E

n

) denote the complete undirected graph on n nodes. For F � E

n

let

x(F ) =

P

e2F

x

e

. For W � V

n

let E

n

(W ) = fuv 2 E

n

j u; v 2 Wg denote the edges in E

n

with endnodes in W and �(W ) = fuv 2 E

n

j u 2 W;v 2 V

n

�Wg the cut with shores W

and V

n

�W . For v 2 V

n

, we abbreviate �(v) for �(fvg). A Hamiltonian cycle in K

n

is also

called a tour. With every tour T � E

n

we associate its incidence vector �

T

2 f0; 1g

E

n

de�ned by

�

T

e

=

�

1 if e 2 T

0 if e 62 T .

If c 2 IR

E

n

is the vector of edge weights of a TSP instance, then the following is an integer

programming formulation of the TSP in the sense that its solutions are exactly the

incidence vectors of tours:

min c

0

x

s.t. x(�(v)) = 2 for all v 2 V

n

(1:1)

x(�(W )) � 2 for all ; 6=W � V

n

(1:2)

0 � x � 1 (1:3)

x integer (1:4)

The equations (1.1) require that any node is incident to exactly two edges and the

inequalities (1.2) ensure that there is only one cycle. The latter are called the subtour

elimination constraints (given here in their cut version).

A �rst LP-relaxation, the subtour relaxation, is obtained by removing the integral-

ity conditions (1.4). The polytope de�ned by (1.1), (1.2) and (1.3) is called the subtour

polytope. The subtour relaxation can be improved by adding further inequalities. The ul-

timate strengthening would be the set of equations and inequalities de�ning the traveling

salesman polytope

P

n

TSP

= conv

�

�

T

j T � E

n

is a tour in K

n

	

:
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However, while it is known that no equations have to be added to those in (1.1), no complete

knowledge of all necessary inequalities is available and it is unlikely that such a complete

description can be given for any n. Small instances were examined, e.g., it is known that

for n = 7 the number of required inequalities is 3,437 (Boyd and Cunningham (1991))

and for n = 8 it is 194,187 (Christof, J

�

unger, Reinelt (1991)).

In practical computation, it has turned out that facet de�ning inequalities for P

n

TSP

(these are valid inequalities for P

n

TSP

which are not dominated by any other inequalities

and are therefore called required above) are very useful. Many researchers have studied

P

n

TSP

and found facet de�ning inequalities. An up-to-date survey on such results is given

in J

�

unger, Reinelt and Rinaldi (1992). For our purposes it is su�cient to list only

those known facets de�ning inequalities which we use in our implementation.

The subtour elimination inequalities (1.2) de�ne facets of the traveling salesman prob-

lem on n cities (TSP(n)) for 3 � jW j � n� 3, see Gr

�

otschel and Padberg (1979).

Let H

1

;H

2

; : : : ;H

r

; T

1

; T

2

; : : : ; T

k

� V

n

such that (V

n

;H

1

;H

2

; : : : ;H

r

; T

1

; T

2

; : : : ; T

k

)

is a connected hypergraph. Call the node sets H

1

;H

2

; : : : ;H

r

handles and the node sets

T

1

; T

2

; : : : ; T

k

teeth. The handles and the teeth de�ne a clique tree in K

n

= (V

n

; E

n

) if

the following conditions are satis�ed:

(i) no two teeth intersect;

(ii) no two handles intersect;

(iii) each tooth contains at least two and at most n� 4 nodes;

(iv) each tooth contains at least one node not belonging to any handle;

(v) each handle intersects an odd number (� 3) of teeth;

(vi) if a tooth T and a handleH have a nonempty intersection, thenH\T is an articulation

set of the clique tree, i.e., the removal of the nodes in H \ T from K

n

disconnects the

clique tree.

The associated clique tree inequality

r

X

i=1

x(E

n

(H

i

)) +

k

X

j=1

x(E

n

(T

j

)) �

r

X

i=1

jH

i

j+

k

X

j=1

(jT

j

j � h (T

j

))�

k + 1

2

;

where h(T

j

) is the number of handles with nonempty intersection with tooth T

j

, is facet

de�ning for TSP(n) with n � 11, see Gr

�

otschel and Pulleyblank (1986). A clique

tree with two handles and seven teeth is displayed in Figure 2.

A clique tree inequality with only one handle (r = 1) is called a comb inequality

and was shown to be facet de�ning for TSP(n) with n � 6 by Gr

�

otschel and Padberg

(1979). A comb inequality where each tooth has exactly one common node with the handle

is called a Chv�atal comb and was discovered by Chvatal (1973). A comb inequality in

which all teeth have cardinality 2 is also called a 2-matching inequality.

Good LP-relaxations contain an enormous number of inequalities. For TSP(n) there

are already O(2

n

) subtour elimination constraints. This makes it prohibitive to store
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H

H

1

2

Figure 2. Handles and teeth of a clique tree.

the constraint matrix and apply an LP-algorithm. Rather, inequalities are produced in

a cutting plane approach which starts with some initial relaxation, say, consisting of

(1.1) and (1.3) and then adding known facet de�ning inequalities \according to need".

More precisely, as soon as the optimal solution x of some relaxation is determined which

is not the incidence vector of a tour, it is tried to identify by separation algorithms

facet de�ning inequalities which are violated by x . As long as such inequalities are found,

they are added to the current relaxation and the new LP is solved, etc. If the optimal

solution x violates some inequalities of a class of facets, an exact separation algorithm

for a class of facets �nds at least one of them. But if we apply a heuristic separation

algorithm for a class of facets, no inequality might be found, even though there are

constraints of this class violated by x. Polynomial time exact separation algorithms are

known for the subtour elimination inequalities (Crowder and Padberg (1980)) and the

2-matching inequalities (Padberg and Rao (1982)). For comb and clique tree inequalities

several heuristics have been proposed in the literature (Gr

�

otschel and Holland (1991),

Padberg and Rinaldi (1990)).

Let us return to the owchart of Figure 1. When we use a cutting plane approach

to determine the local lower bounds the algorithm becomes a branch & cut algorithm.

Requiring or forbidding edges in the de�nition of subproblems becomes setting the corre-

sponding variables to 1 or 0, respectively. In the implementation to be described in the

next section, the local lower bound and global upper bound computations are combined,

since any fractional LP-solution occuring during the cutting plane procedure not only pro-

vides a local lower bound but also information that can be utilized to improve the shortest

known tour by heuristic methods.

We close this section by giving a short historical review of the developments that

eventually lead to our current notion of a branch & cut algorithm. The �rst successful

attempt to solve a \large" instance of the traveling salesman problem is reported in the

seminal paper by Dantzig, Fulkerson and Johnson (1954) who solved a 49-city in-

stance. This paper is one of the cornerstones on which much of the methodology of using

heuristics, linear programming and separation to attack combinatorial optimization prob-

lems is founded. It took a long time until the ideas of Dantzig, Fulkerson and Johnson
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were taken up again, and this must probably be attributed to the fact that the systematic

way of using cutting planes in integer programming which had been put on a solid basis

by the work of Gomory (1958, 1960, 1963) was not successful in practice.

An important further development is due to the systematic study of the traveling

salesman polytope P

n

TSP

. Gr�otschel used the knowledge of this polytope to solve a 120 city

instance to optimality, using IBM's linear programming package MPSX to optimize over

relaxations of the traveling salesman polytope, visually inspecting the fractional solutions,

adding violated facet de�ning inequalities, resolving etc., until the optimal solution was the

incidence vector of a tour. He needed 13 iterations of this process (see Gr

�

otschel (1977,

1980)). Since the early eighties, then, more insight into the facial structure of the traveling

salesman polytope and improved cutting plane based algorithms developed gradually.

On the computational side, the next steps were the papers Padberg and Hong

(1980) and Crowder and Padberg (1980). In the �rst paper, a primal cutting plane

approach is used to obtain good bounds on the quality of tours generated in the following

way. An initial tour is determined by a heuristic described in Lin and Kernighan

(1973), and the �rst linear programming problem is given by (1.1) and (1.3). The initial

basis corresponds to the initial tour. Then a pivoting variable is selected by the steepest

edge criterion. If the adjacent basic solution after the pivot is the incidence vector of a

tour, the pivot is carried out, and the algorithm proceeds with the new tour. Otherwise, it

is tried to identify a violated inequality which is satis�ed with equality by the current tour

but violated by the adjacent fractional solution. If such an inequality can be found, it is

appended to the current LP, a degenerate pivot is made on the selected pivoting variable,

and the next pivoting variable is selected. Otherwise, the current (�nal) linear program is

solved to optimality in order to obtain a lower bound on the length of the shortest tour.

Out of 74 sample problems ranging from 15 to 318 cities, 54 problems could be solved to

optimality this way. The whole computer code was written by the authors including an

implementation of the simplex algorithm in rational arithmetic.

In the second paper, IBM's MPSX LP-software is used instead, and IBM's MPSX-MIP

integer programming software is used to �nd the incidence vector of an optimum tour as

follows. MIP is applied to the �nal LP to �nd an optimal integral solution. If this solution is

the incidence vector of a tour, this tour is returned as the optimum solution. Otherwise the

solution is necessarily a collection of subtours, and the corresponding subtour elimination

constraints are appended to the integer program and the process is iterated. Thus for the

�rst time a fully automatic computer program involving no human interaction was available

to solve traveling salesman problems by heuristics, linear programming, separation and

enumeration in the spirit of Dantzig, Fulkerson and Johnson. Using their computer code,

the authors were able to solve all the 74 sample problems to optimality. The 318 city

instance was solved in less than an hour of CPU time on an IBM 370/168 computer under

the MVS operating system.

A similar, yet more sophisticated approach using MPSX/MIP is described in Gr

�

ot-

schel and Holland (1988). They use a (dual) cutting plane procedure to obtain a
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tight linear programming relaxation. Then they proceed as Crowder and Padberg. An

additional important enhancement is the use of sparse graphs, a prerequisite for attacking

larger problem instances. Furthermore improved separation routines are used, partly based

on new results by Padberg and Rao (1982) on the separation of 2-matching inequalities.

The code was used to solve geometric instances with up to 666 nodes and random instances

with up to 1000 nodes. Depending on parameter settings, the former took between ca 9

and 16 hours of CPU time, and the latter between ca 23 and ca 36 minutes of CPU time on

an IBM 3081D under the operating system VM/CMS. Random problems where the edge

weights are drawn from a uniform distribution appear to be much easier than geometric

instances. From a software engineering point of view, the codes by Padberg and Hong,

Crowder and Padberg and Gr�otschel and Holland had the advantage that any general

purpose branch & bound software for integer programming could be used to �nd integer

solutions. Only if such an integer solution contained subtours, the corresponding subtour

elimination constraints were added to the LP-relaxation and the branch & bound part was

started from scratch, again using a �xed linear programming relaxation in each node of

the branch & bound tree.

On the other hand, the iterated \solving from scratch", whenever the addition of fur-

ther subtour elimination constraints was necessary, is a de�nite disadvantage. An even

bigger drawback is the fact that the possibility of generating further globally valid cutting

planes in non-root nodes of the branch & bound tree is not utilized. Furthermore, general

purpose branch & bound software typically allows very little inuence on the optimiza-

tion process such as variable �xing based on structural properties of the problem. Such

disadvantages are eliminated by the natural idea of applying the cutting plane algorithm

with globally valid (preferably facet de�ning) inequalities recursively in every node of the

enumeration tree. Such an approach was �rst published for the linear ordering problem by

Gr

�

otschel, J

�

unger and Reinelt (1984). In Padberg and Rinaldi (1987) a similar

approach was outlined for the TSP and called \branch & cut". By reporting the solution

to optimality of three large unsolved problems of 532, 1002, and 2392 cities, it was shown

for the �rst time in this paper how the new approach could be successfully used to solve

instances of the traveling salesman problem that could not be solved with other available

techniques.

The �rst state-of-the-art branch & cut algorithm for the traveling salesman problem

is the algorithm published in Padberg and Rinaldi (1991). The major new features of

the Padberg-Rinaldi algorithm are the branch & cut approach in conjunction with the use

of column/row generation/deletion techniques, sophisticated separation procedures and an

e�cient use of the LP optimizer. The LPs are solved using the packages XMP ofMarsten

(1981) on the DIGITAL computers microVAX II, VAX 8700 and VAX 780, as well as on

the Control Data computer CYBER 205, and the experimental version of the code OSL

by John Forrest of IBM Research on an IBM 3090/600 supercomputer. With the latter

version of the code, the 2392-node instance is solved to optimality in about 4.3 hours of

CPU time.
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Recently the solution of a 3038-node instance with an enhanced branch & cut algo-

rithm is reported (Applegate, Bixby, Chv�atal and Cook (personal communications, 1992)).

However, no written report has been published yet.

2 Algorithm

This section discusses our implementation of a branch & cut algorithm for the TSP in

detail. It resembles the implementation of Padberg and Rinaldi (1991), but there are

some di�erences:

{ During the branch & cut algorithm, we exploit fractional LP solutions not only for

getting lower bounds, but also for obtaining good tours.

{ The subset of active variables is generated and managed in a di�erent way.

{ The pricing of nonactive variables is done in a hierarchical fashion.

{ Separation of comb and clique tree inequalities is not as sophisticated.

We used the programming language C. The powerful builtin functions for dynamic memory

allocation simplify the e�cient use of memory space.

In our description, we proceed as follows. First we describe the enumerative part

of the algorithm, i.e., we discuss in detail how branching and selection operations are

implemented. Then we explain the work done in a subproblem of the enumeration. Finally

we explain some important global data structures. There are two major ingredients of the

processing of a subproblem, the computation of local lower and global upper bounds. The

lower bounds are produced by performing an ordinary cutting plane algorithm for each

subproblem. Up to this point, our notion of a branch & cut algorithm coincides with the

de�nition which is common in the literature. The upper bounds give a new feature. They

are obtained by exploiting fractional LP solutions in the construction of tours which are

improved by heuristics.

The branch & cut algorithm for the TSP is outlined in the owchart of Figure 3.

Roughly speaking, the two leftmost columns describe the cutting plane phases within a

single subproblem, the third column shows the preparation and execution of a branching

operation, and in the rightmost column, the fathoming of a subproblem is performed. We

give informal explanations of all steps of the owchart.

But before going into detail, we have to de�ne some terminology. Since in a branching

step two new subproblems are generated, the set of all subproblems can be represented by

a binary tree, which we call branch & cut tree. Hence we call a subproblem also branch

& cut node. We distinguish between three di�erent types of branch & cut nodes. The

node which is currently processed is called the current branch & cut node. The other

unfathomed leaves of the branch & cut tree are called the active nodes. These are the

nodes which still must be processed. Finally, there are the already processed nonactive

nodes. The terms edge of a graph and variable in the integer programming formulation
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Figure 3. Flowchart of the branch & cut algorithm.
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are used interchangeably, because they are in a one to one correspondence. Each variable

(edge) has one of the following statuses during the computation: atlowerbound, basic,

atupperbound, settolowerbound, settoupperbound, fixedtolowerbound, fixedtoup-

perbound. When we say that a variable is �xed to zero or one, it means that it is at

this value for the rest of the computation. If it is set to zero or one, this value remains

valid only for the current branch & cut node and all branch & cut nodes in the subtree

rooted at the current one in the branch & cut tree. The meanings of the other statuses are

obvious: As soon as an LP has been solved, each variable which has not been �xed or set

receives one of the statuses atlowerbound, basic or atupperbound by the revised simplex

method with lower and upper bounds. Finally, the global variable lpval always denotes

the optimal value of the last LP that has been solved, the global variable llb is a lower

bound for the currently processed node, the global variable gub (global upper bound) gives

the value of the currently best known tour. The minimal lower bound of all active branch

& cut nodes and the current branch & cut node is the global lower bound glb for the whole

problem, whereas the global variable rootlb is the lower bound found while processing

the root node of the remaining branch & cut tree. As we will see later lpval and llb may

di�er, because we use sparse graph techniques, i.e., the computation of the lower bounds

is processed only on a small subset of the edges and only those edges are added which are

necessary to guarantee the validity of the bounds on the complete graph. By the root

of the remaining branch & cut tree we denote the highest common ancestor in the

branch & cut of tree of all branch & cut nodes which still must be processed. The values of

gub and glb can be used to terminate the computation as soon as the guarantee require-

ment is satis�ed. Like in branch & bound terminology we call a subproblem fathomed,

if the local lower bound llb of this subproblem is greater than the global upper bound

gub or the subproblem becomes infeasible (e.g., branching variables have been set in a way

that the graph does not contain a tour). Following TSPLIB (Reinelt (1991a, 1991b)) all

distances are integers. So all terms of the computation which express a lower bound may

be rounded up, e.g., one can fathom a node with global upper bound gub and local lower

bound llb, if dllbe � gub. Since this is only correct for the distances de�ned in TSPLIB

we neither outline this feature in the owchart nor in the following explanations.

The algorithm consists of three di�erent parts: The enumerative frame, the computa-

tion of upper bounds and the computation of lower bounds. It is easy to identify the boxes

of the owchart of Figure 1 with the dashed boxes of the owchart of Figure 3. The upper

bounding is done in EXPLOIT LP, the lowerbounding in all other parts of the dashed

bounding box. There are three possibilities to enter the bounding part and three to leave

it. Normally we perform the bounding part after the startup phase in INITIALIZE or the

selection of a new subproblem in SELECT. Furthermore it is advantageous, although not

necessary for the correctness of the algorithm, to reenter the bounding part if variables

are �xed or set to new values by FIXBYLOGIMP or SETBYLOGIMP, instead of creating

two new subproblems in BRANCH. The ordinary way of leaving the bounding part takes

place if no variables are added by PRICE OUT at the end of the bounding part. In this
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case we know that the bounds for the just processed subproblem are valid for the com-

plete graph. Sometimes an infeasible subproblem can be detected in the bounding part.

This is the second way to leave the bounding part after ADD VARIABLES. We also stop

the computations of bounds and output the currently best known tour, if our guarantee

requirement is ful�lled (guarantee reached), but we ignore this, if we want to �nd the

optimum solution.

2.1 Enumerative frame

In this paragraph we explain our implementation of the implicit enumeration. Nearly

all parts of this enumerative frame are not TSP speci�c. Hence it is easy to adapt it

to other combinatorial optimization problems. Preliminary experience has already been

obtained for the maximum planar subgraph problem (J

�

unger and Mutzel (1993)) and

the sequential ordering problem by Ascheuer, J�unger and Reinelt.

INITIALIZE

The problem data is read. We distinguish between several problem types as de�ned in

Reinelt (1991a, 1991b) for the speci�cations of TSPLIB data. In the simplest case, all

edge weights are given explicitly in the form of a triangular matrix. In this case very large

problems are already prohibitive because of the storage requirements for the problem data.

But very large instances are usually generated by some algorithmic procedure, which we

utilize. The most common case is the metric TSP instance, in which the nodes de�ning the

problem correspond to points in d-dimensional space and the distance between two nodes

is given by some metric distance between the respective points. Therefore, distances can

be computed as needed in the algorithm and we make use of this fact in many cases.

In practical experiments it has been observed that most of the edges of an optimum

tour connect near neighbors. Often, optimum tours are contained in the 10-nearest neigh-

bor subgraph of K

n

. In any case, a very large fraction of optimum tour edges are already

contained in the 5-nearest neighbor subgraph of K

n

. Depending on two parameters k

s

and

k

r

(the choice of k

s

and k

r

is discussed in section 3) we compute the k

s

-nearest neighbor

subgraph and augment it by the edges of a tour found by a simple heuristic so that the

resulting sparse graph G = (V;E) is Hamiltonian. Using this tour, we can also initialize

the value of the global upper bound gub. We also compute a list of edges which have to be

added to E to contain the k

r

-nearest neighbor subgraph. These edges form the reserve

graph, which is used in PRICE OUT and ADD VARIABLES. We will start working on

G, adding and deleting edges (variables) dynamically during the optimization process. We

refer to the edges in G as active edges and to the other edges as nonactive edges. All

global variables are initialized. Afterwards the root node of the complete branch & cut

tree is processed by the bounding part.

13



BOUNDING

The computation of the lower and upper bounds is outlined in the subsections 2.2 and 2.3.

We continue the explanation of the enumerative frame at the ordinary exit of the bounding

part (at the end of the �rst column of the dashed bounding box). In this case it is

guaranteed that the lower bound on the sparse graph lpval becomes a local lower bound

llb for the subproblem on the complete graph.

Since we use exact separation of subtour elimination constraints, all integral LP so-

lutions are incidence vectors of tours, as soon as no more subtour elimination constraints

are generated.

We check if the current branch & cut node cannot contain a better tour than the

currently best known one (gub � llb). If this is the case, the current branch & cut node

can be fathomed (rightmost column of the owchart), and if no further branch & cut nodes

have to be considered, the currently best known tour must be optimum (list empty after

SELECT). Otherwise we have to check if the current LP-solution is already a tour. If

this is the case (feasible) we can fathom the node, otherwise we prepare a branching

operation and the selection of another branch & cut node for further processing (third

column of the owchart).

INITIALIZE FIXING, FIXBYREDCOST

If we are preparing a branching operation, and the current branch & cut node is the root

node of the currently remaining branch & cut tree, the reduced cost of the nonbasic active

variables can be used to �x them forever at their current values. Namely, if for an edge e

the variable x

e

is nonbasic and the reduced cost is r

e

, we can �x x

e

to zero if x

e

= 0 and

rootlb + r

e

> gub and we can �x x

e

to one if x

e

= 1 and rootlb � r

e

> gub.

During the computational process, the value of gub decreases, so that at some later

point in the computation, one of these criteria can be satis�ed, even though it is not

satis�ed at the current point of the computation. Therefore, each time when we get a new

root of the remaining branch & cut tree, we make a list of candidates for �xing of

all nonbasic active variables along with their values (0 or 1) and their reduced costs and

update rootlb. Since storing these lists in every node, which might eventually become

the root node of the remaining active nodes in the branch & cut tree, would use too much

memory space, we process the complete bounding part a second time for the node, when it

becomes the new root. If we could initialize the constraint system for the recomputation

by those constraints, which were present in the last LP of the �rst processing of this node,

we would need only a single call of the simplex algorithm. However, this would require

too much memory. So we initialize the constraint system with the constraints of the last

solved LP. As some facets are separated heuristically, it is not guaranteed that we can

achieve the same local lower bound as in the previous bounding phase. Therefore we not

only have to use the reduced costs and statuses of the variables of this recomputation, but

also the corresponding local lower bound as rootlb in the following calls of the routine

FIXBYREDCOST. If we initialize the basis by the variables contained in the best known
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tour and call the primal simplex algorithm, we can avoid phase 1 of the simplex method.

Of course this recomputation is not necessary for the root of the complete branch & cut

tree, i.e., the �rst processed node. The list of candidates for �xing is checked by the routine

FIXBYREDCOST whenever it has been freshly compiled or the value of the global upper

bound gub has improved since the last call of FIXBYREDCOST.

FIXBYREDCOST may �nd that a variable can be �xed to a value opposite to the one

it has been set to (contradiction). This means that earlier in the computation, some-

where on the path of the current branch & cut node to the root of the branch & cut tree, we

have made an unfavorable decision which led to this setting either directly in a branching

operation or indirectly via SETBYREDCOST or SETBYLOGIMP (to be discussed be-

low). Contradictions are handled by CONTRAPRUNING, whenever FIXBYREDCOST

has set contradiction to true upon such a condition.

Before starting a branching operation and if no contradiction has occurred, some

fractional (basic) variables may have been �xed to new values (0 or 1). In this case we

solve the new LP rather than performing the branching operation.

FIXBYLOGIMP

After variables have been �xed by FIXBYREDCOST, we call FIXBYLOGIMP. This rou-

tine tries to �x more variables by logical implication as follows: If two edges incident to

a node v have been �xed to 1, all other edges incident to v can be �xed to 0 (if not �xed

already). Like in FIXBYREDCOST, contradictions to previous variable settings may oc-

cur. Upon this condition the variable contradiction is set to true. If variables are �xed

to new values, we proceed as explained in FIXBYREDCOST.

In principle also �xing or setting variables to zero could have logical implications. If

all incident edges of a node but two are �xed or set to zero, these two edges can be �xed

or set to one. However, as we work on sparse graphs, this occurs quite rarely so that we

disregard it.

SETBYREDCOST

While �xings of variables are globally valid for the whole computation, variable settings

are only valid for the current branch & cut node and all branch & cut nodes in the subtree

rooted at the current branch & cut node. SETBYREDCOST sets variables by the same

criteria as FIXBYREDCOST, but based on the local reduced cost and the local lower

bound llb of the current subproblem rather than \globally valid reduced cost" and the

lower bound of the root node rootlb. Contradictions are possible if in the meantime the

variable has been �xed to the opposite value. In this case we go to CONTRAPRUNING.

The variable settings are associated with the current branch & cut node, so that they can

be undone when necessary. All set variables are inserted together with the branch & cut

node into the hash table of the set variables, which is explained in subsection 2.4.
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SETBYLOGIMP

This routine is called whenever SETBYREDCOST has successfully �xed variables, as well

as after a SELECT operation. It tries to set more variables by logical implication as

follows: If two edges incident to a node v have been set or �xed to 1, all other edges

incident to v can be set to 0 (if not �xed already). Like in SETBYREDCOST, all settings

are associated with the current branch & cut node. If variables are �xed to new values,

we proceed as explained in FIXBYREDCOST. As in SETBYREDCOST, the set variables

are stored in the hash table.

After the selection of a new node in SELECT, we check if the branching variable of

the father is set to 1 for the selected node. If this is the case, SETBYLOGIMP may also

set additional variables.

BRANCH

Some fractional variable is chosen as the branching variable and, accordingly, two new

branch & cut nodes, which are the two sons of the current branch & cut node, are created

and added to the set of active branch & cut nodes. In the �rst son the branching variable

is set to 1 in the second one to 0. These settings are also registered in the hash table.

Some strategies for choosing the branching variable are discussed in section 3.

SELECT

A branch & cut node is selected and removed from the set of active branch & cut nodes.

We discuss di�erent selection strategies in the next section. If the list of active branch

& cut nodes is empty, we can conclude optimality of the best known tour. Otherwise we

start processing the selected node. After a successful selection, variable settings have to

be adjusted according to the information stored in the branch & cut tree. If it turns out

that some variable must be set to 0 or 1, yet has been �xed to the opposite value in the

meantime, we have a contradiction similar as discussed above. In this case we prune the

branch & cut tree accordingly by going to CONTRAPRUNING and fathom the node in

FATHOM. If the local lower bound llb of the selected node is greater or equal to the global

upper bound gub, we fathom the node immediately and continue the selection process. A

branch & cut node has pointers to his father and his two sons. So it is su�cient to store a

set variable only once in any path from the root to a leaf in the branch & cut tree. If we

select a new problem, i.e., proceed with the computation at some leaf of the tree, we only

have to determine the highest common ancestor of the old node and the new leaf, reset the

set variables on the path from the old node to the common ancestor and set the variables

on the path from the common ancestor to the new leaf.

CONTRAPRUNING

Not only the current branch & cut node, where we have found the contradiction, can be

deleted from further consideration, but all active nodes with the same \wrong" setting can
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be fathomed. Let the variable with the contradiction be e. Via the hash table of the set

variables we can e�ciently determine all branch & cut nodes where e has been set. If in a

branch & cut node b the variable e is set to the \wrong" bound we remove all active nodes

(unfathomed leaves) in the subtree below b from the set of active nodes.

FATHOM

If for a node the global upper bound gub exceeds the local lower bound llb, or a con-

tradiction occured, or an infeasible branch & cut node has been generated, the current

branch & cut node is deleted from further consideration. Even though a node is fathomed,

the global upper bound gub may have changed during the last iteration, so that addi-

tional variables may be �xed by FIXBYREDCOST and FIXBYLOGIMP. The fathoming

of nodes in FATHOM and CONTRAPRUNING may lead to a new root of the branch &

cut tree for the remaining active nodes.

OUTPUT

The currently best known tour, which is either the optimum tour or satis�es the desired

guarantee requirement, is written to an output �le.

2.2 Computation of lower bounds

The computation of lower bounds consists of all elements of the dashed bounding box

except EXPLOIT LP, where the upper bounds are computed.

During the whole computation, we keep a pool of active and nonactive facet de�ning

inequalities of the traveling salesman polytope. The active inequalities are the ones in

the current LP and are both stored in the pool and in the constraint matrix, whereas the

inactive constraints are only present in the pool. An inequality becomes inactive, if it

is nonbinding in the last LP solution. When required, it is easily regenerated from the

pool and made active again later in the computation. The pool is initially empty. If an

inequality is generated by a separation algorithm, it is stored both in the pool and added

to the constraint matrix. Further details of the pool are outlined in subsection 2.4.

INITIALIZE NEW NODE

Let A

n

be the adjacency matrix corresponding to the sparse graph. If the node is the root

node of the branch & cut tree the LP is initialized to

min c

0

x

s.t. A

n

x = 2

0 � x � 1

and the feasible basis obtained from the initial tour is used as a starting basis. The set of

active branch & cut nodes is initialized as the empty set. In subsequent subproblems, we
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initialize the constraint matrix by the equations induced by the adjacency matrix of the

sparse graph and by the inequalities which have been active, when the last LP of the father

of the branch & cut has been solved. These inequalities can be regenerated from the pool.

Since the basis of the father is dual feasible for the initial LP of its sons, we start with

this basis to avoid phase 1 of the simplex method. The columns of nonbasic set and �xed

variables are removed from the constraint matrix and if their status is settoupperbound

or fixedtoupperbound, the right hand side of the constraint has to be adjusted and the

corresponding coe�cients of the objective function must be added to the optimal value

returned by the simplex algorithm in order to get the correct value of the variable lpval.

Set or �xed basic variables are not deleted, because this would lead to an infeasible basis

and require phase 1 of the simplex method. We perform the adjustment of these variables

by adapting their upper and lower bounds.

SOLVE LP

The LP is solved, either by the two phase primal simplex method, if the current basis

is neither primal nor dual feasible, by the primal simplex method, if the basis is primal

feasible (e.g., if variables have been added) or by the dual simplex method if the basis

is dual feasible (e.g., if constraints have been added). As LP solver we use CPLEX by

R.E. Bixby.

If the LP has no feasible solution we go to ADD VARIABLES, otherwise we proceed

downward in the owchart.

ADD VARIABLES

Variables have to be added to the sparse graph if indicated by the reduced costs (handled

by PRICE OUT) or if the current LP is infeasible. The latter may be caused by three

reasons. First, equations may not be satis�able because the variables associated with all

but at most one edge incident to a node v in the sparse graph may be �xed or set to 0.

Such an infeasibility can either be removed by adding an additional edge incident to v, or,

if all edges are present already, we can fathom the branch & cut node.

Second, suppose that all equations are satis�able, yet some active inequality has a

void left hand side, since all involved variables are �xed or set, but is violated. As is clear

from our strategy for variable �xings and settings, also this means that the branch & cut

node is fathomed.

Finally, neither of the above conditions may apply, and the infeasibility is detected

by the LP solver. In this case we perform a pricing step in order to �nd out if the dual

feasible LP solution is dual feasible for the entire problem. We check for variables that are

not in the current sparse graph (i.e., are assumed to be at their lower bound 0) and have

negative reduced cost. Such variables are added to the current sparse graph. An e�cient

way of the computation of the reduced costs is outlined in PRICE OUT.

If variables have been added, we solve the new LP. Otherwise, we try to make the

LP feasible by a more sophisticated method. The LP value lpval, which is the objective
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function value corresponding to the dual feasible basis where primal infeasibility is detected,

is a lower bound for the objective function value obtainable in the current branch & cut

node. So if lpval � gub, we can fathom the branch & cut node.

Otherwise, we try to add variables that may restore feasibility. First we mark all

infeasible variables, including negative slack variables.

Let e be a nonactive variable and r

e

be the reduced cost of e. We take e as a candidate

only if lpval+ r

e

� gub. Let B be the basis matrix corresponding to the dual feasible LP

solution, at which the primal infeasibility was detected. For each candidate e let a

e

be the

column of the constraint matrix corresponding to e and solve the system Ba

e

= a

e

. Let

a

e

(b) be the component of a

e

corresponding to basic variable x

b

. Increasing x

e

reduces

some infeasibility if one of the following holds.

{ x

b

is a structural variable (i.e., corresponding to an edge of G) and

x

b

< 0 and a

e

(b) < 0

or

x

b

> 1 and a

e

(b) > 0

{ x

b

is a slack variable and

x

b

< 0 and a

e

(b) < 0:

In such a case we add e to the set of active variables and remove the marks from all

infeasible variables whose infeasibility can be reduced by increasing x

e

. We do this in the

same hierarchical fashion as described below in PRICE OUT.

If variables can be added, we regenerate the constraint structure and solve the new

LP, otherwise we fathom the branch & cut node. Note that all systems of linear equations

that have to be solved have the same matrix B, and only the right hand side a

e

changes.

We utilize this by computing a factorization of B only once, in fact, the factorization can

be obtained from the LP solver for free. For further details on this algorithm, see Padberg

and Rinaldi (1991).

EXPLOIT LP

We check if the current LP solution is the incidence vector of a tour. If this is the case,

the variable feasible is set to true. Otherwise, we try to improve the upper bound

as discussed in 2.3. Afterwards we normally proceed with the generation of additional

inequalities in SEPARATE.

We can leave the bounding part and output the best known solution if the guarantee

requirements are satis�ed.

Often it is reasonable to abort the cutting plane part, if no signi�cant increase of lpval

in the last LP-solutions has taken place. This phenomenon is called tailing-o�. If during

the last k iterations in the bounding part, lpval did not increase by more than p%, we

perform a pricing step and create two new subproblems, if no variables have been added,
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otherwise we resolve the LP. Tailing o� is only possible, if there are fractional variables in

the current optimal LP-solution to �nd a branching variable. This is guaranteed , e.g., if

the current LP solution is not the incidence vector of a tour and no subtour elimination

constraint is violated. Di�erent parameters k and p are discussed in section 3, where we

also show that it is advantageous to process a pricing step after every l-th call of the LP-

solver (additional pricing). These two algorithmic details have already been used by

Padberg and Rinaldi (1991). We also discuss the choice of the parameter l in section 3.

SEPARATE

The separation phase is a central part of our algorithm. We use hierarchical separation

in three stages. The second and third stage are only executed if the respective previous

stages did not generate any inequality. In the �rst stage we call the separation routines for

subtour elimination and 2-matching constraints. The second stage is the pool separation.

We check if an inactive comb or clique tree constraint is violated. Of course, we could

do pool separation also with subtour elimination constraints and 2-matching constraints

before calling the respective separation routines, but usually there are so many constraints

in the pool that direct separation is more e�cient than scanning the pool. However, the

disadvantage of this strategy is that constraints might be stored more than once in the

pool. In the �nal stage of the separation we try to identify violated comb and clique tree

constraints. In the current implementation we use an exact subtour elimination constraint

separator (Crowder and Padberg (1980)), a heuristic for the separation of 2-matching

constraints of Padberg and Rinaldi (1990), which is based on the exact separation

algorithm of Padberg and Rao (1982) and heuristics for separating comb constraints

and clique tree constraints (based on ideas of Gr

�

otschel and Holland (1991)). The

generated constraints are both stored in the pool and added to the current constraint

matrix of the LP by the post-optimization routines of CPLEX.

ELIMINATE

Before the LP is solved after a successful cutting plane generation phase, all active inequal-

ities which are nonbinding in the current LP solution are eliminated from the constraint

structure and marked inactive in the pool, in order to save memory and to accelerate the

solution of the subsequent linear programs. We can safely do this to keep the constraint

structure as small as possible, because we can restore the constraints from the pool (if they

were not removed in the meantime).

PRICE OUT

Pricing is necessary before a branch & cut node can be fathomed. Its purpose is to check

if the LP solution computed on the sparse graph is valid for the complete graph, i.e., all

nonactive variables \price out" correctly. If this is not the case, nonactive variables with

negative reduced cost are added to the sparse graph and the new LP is solved using the
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primal simplex method starting with the previous (now primal feasible) basis, otherwise

we can update the local lower bound llb and possibly the global lower bound glb. If the

global lower bound has changed, our guarantee requirement might be satis�ed and we can

stop the computation after the output of the currently best known tour.

Although the correctness of the algorithm does not require this, we perform additional

pricing steps every k solved LPs (see Padberg and Rinaldi (1991)). The e�ect is that

nonactive variables which are required in a good or optimum tour tend to be added to the

sparse graph early in the computational process. We discuss the choice of k in section 3.

In a �rst phase, only the variables in the reserve graph are considered. If the \partial

pricing" considering only the edges of the reserve graph has not added variables, we have

to check the reduced cost of all nonactive variables which takes a lot of computational

e�ort. But this second step of PRICE OUT can be processed more e�ciently by an idea

of Padberg and Rinaldi (1991). If our current branch & cut node is the root of the

remaining branch & cut tree, we can check if the reduced cost r

e

of a nonactive variable e

satis�es the relation lpval+r

e

> gub. In this case we can discard this nonactive candidate

edge forever. During the systematic enumeration of all edges of the complete graph, we can

make an explicit list of those edges which remain possible candidates. In the early steps of

the computation, too many such edges remain, so that we cannot store this list completely

with reasonable memory consumption. Rather, we predetermine a reasonably sized bu�er

and mark the point where the systematic enumeration has to be resumed after considering

the edges in the bu�er. In later steps of the computation there is a good chance that the

complete list �ts into the bu�er, so that later calls of the pricing routine become much

faster than early ones.

To process PRICE OUT e�ciently, for each node v a list of those constraints contain-

ing v is made. Whenever an edge e = vw is considered, we initialize the reduced cost by

c

e

, then v's and w's constraint lists are compared, and the value of the dual variable y

f

times the corresponding coe�cient is subtracted from the reduced cost whenever the two

lists agree in a constraint f . The format of the pool, which is explained in subsection 2.4,

provides us with an e�cient way to compute the constraint lists and the coe�cients.

2.3 Computation of global upper bounds

The cutting plane part together with the enumeration scheme provides an algorithm that

is capable of solving a traveling salesman problem instance in \�nite time". But, not even

a rough estimation on the necessary running time for a particular instance can be given.

The size of a problem is only an insu�cient characterization of its hardness.

According to our philosophy, an algorithm, that provides successively improving lower

bounds on the objective function value of an optimum solution and only guarantees that

eventually an optimum solution is found, is not adequate for practical problem solving. In

fact, it may even turn out to be useless. What is required in practice is in addition that,
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on the �rst hand, a reasonable feasible solution is given quickly and that, on the second

hand, better solutions become available as more running time is spent.

For the traveling salesman problem a host of heuristics is available. Usually, they are

employed independent of lower bound computations. They are used to give a good feasible

solution before a branch & bound algorithm is started. Then it is left to the branch &

bound algorithm to �nd further tours. We take a di�erent point of view in our approach.

Rather than running heuristics in an isolated way we think that the fractional LP solutions

occuring in the lower bound computations give hints on the structure of optimum or near

optimum tours. We therefore prefer an algorithmic framework that integrates upper and

lower bound computations. As we shall see below there are also inuences of the tour

heuristics to the lower bound part.

The implementation we present here is designed for a sequential computer. The basic

requirement for the upper bound computations is therefore e�ciency in order not to inhibit

the optimization process. While in the �rst stages high emphasis is laid on providing good

tours, this emphasis is less in the later stages of the computation process. On the other

hand, computing upper bounds can always be reasonable since new knowledge about the

structure of optimum tours is acquired (e.g. because of �xed and set variables in the branch

& cut tree).

We discuss the various aspects of using heuristics to �nd good tours based on the

information in LP solutions coming up in the algorithm. In our owchart the corre-

sponding computations are performed in EXPLOIT LP, some initializations are done in

INITIALIZE.

Candidate subgraph

The basic idea that we apply for our heuristics is the use of a candidate subgraph. A

candidate subgraph is a subgraph of the complete graph on n nodes containing reasonable

edges in the sense that they are \likely" to be contained in a good tour. These edges

are taken with priority in the various heuristics, thus avoiding the consideration of the

majority of edges which are assumed to be of no importance. Various candidate subgraphs

and the question of how to compute them e�ciently are discussed in Reinelt (1992) and

J

�

unger, Reinelt & Rinaldi (1992).

In the present context we relate the candidate subgraph to the set of active variables

in the linear programming problems. Basically, we start with some candidate subgraph

(which may consist of the sparse graph used to initialize the cutting plane part, or the

sparse graph enhanced by the reserve graph, or just the empty graph) and then add edges

whose corresponding values are close to one. In order to avoid too extensive growing of

the candidate subgraph and to avoid being biased by LPs that were not recently solved,

we clear the candidate subgraph in certain intervals (e.g. every 20th cutting plane phase)

and reinitialize it.
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Exploiting the LP solution

Integer optimal solutions, i.e., incidence vectors of tours, will almost never result from the

LPs occuring in the branch & bound algorithm. But, as can be seen on a graphics display,

these solutions, although having many fractional components, give information on good

tours. They have a certain number of variables equal to 1 and also a certain number of

variables whose values are close to 1. We exploit this to form a starting tour for subsequent

improvement heuristics as follows.

First, we check if the current LP solution is the incidence vector of a tour. If this

is the case, the variable feasible is set to true and we proceed with the pricing routine.

Otherwise, edges are sorted according to their values in the current LP solution. We give

decreasing priorities to edges as follows:

{ edges that are �xed or set to 1,

{ edges equal to 1 or close to 1 in the current LP,

{ edges occuring in several successive LPs.

This list is scanned and edges become part of the tour if they do not produce a subtour with

the edges selected so far. This gives a system of paths which now have to be connected.

To this end a savings heuristic (Clarke and Wright (1964)), originally developed for

vehicle routing problems, is used. It can be applied here since the traveling salesman

problem can be considered as a special vehicle routing problem involving only one vehicle.

This heuristic basically consists of successively merging partial tours to eventually

obtain a Hamiltonian tour. In our case we proceed as follows. We select one node as base

node and form partial tours by connecting this base node to the end nodes of each of the

paths obtained in the selection step and also adding a pair of edges to nodes not contained

in any path. Then, as long as more than one subtour is left, we compute for every pair

of tours the savings that is achieved if the tours are merged by deleting in each tour an

edge to the base node and connecting the two open ends. The two tours giving the largest

savings are merged. In our implementation, we try to avoid edges for connecting paths

that are �xed or set to 0 in the branch & cut tree.

Some remarks concerning the implementation are in order. The crucial point is the

update of the minimum merge possibilities. We can consider the system of tours as a

system of paths whose endnodes are thought of as being connected to the base node. A

merge operation essentially consists of connecting two ends of di�erent paths. For �nding

the best merge possibility we have to know for each endnode its best possible connection to

an endnode of another path (\best" with respect to the cost of merging the corresponding

tours). This best possibility may change if two tours are merged. Because we do not know

how many nodes are a�ected we can only bound the necessary update time by O(n

2

) giving

an overall heuristic with running time O(n

3

). For small problems we can achieve running

time O(n

2

logn), but we have to store the matrix of all possible savings which requires

O(n

2

) storage space.
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For large problem instances and in particular in our framework, we can neither a�ord

O(n

3

) nor O(n

2

logn) running time. We therefore make use of the candidate set. Namely,

merge operations are preferred that use a candidate edge for connecting two paths. The

update is simpli�ed in that for a node whose best merge possibility changes only candidate

edges incident to that node are considered for connections. If during the algorithm an

endnode of a path becomes isolated since none of its incident subgraph edges is feasible

anymore, we compute its best merge possibility by enumeration.

Improving the �rst solution

Having applied the savings heuristic we try to improve this tour by local modi�cations.

Here we use variants of the 3-opt heuristic and of the Lin-Kernighan heuristic.

A move of the 3-opt heuristic consists of removing three edges from the current tour

and reconnecting the three resulting paths in the best possible way. The number of such

3-opt moves is

�

n

3

�

and there are eight ways to connect three paths to form a tour (if each

of them contains at least one edge). The simpler node insertion, edge insertion, and 2-opt

exchange are special 3-opt moves. Node (edge) insertion is obtained if one path of the

3-opt move consists of just one node (edge). A 2-opt move is a 3-opt move where one

eliminated edge is used again for reconnecting the paths. Out of the eight 3-opt moves

only four are real 3-opt moves (three moves are just 2-opt moves and one move leaves the

tour unchanged). To examine all 3-opt moves whether they can contribute to decrease the

tour length takes time O(n

3

), and is therefore infeasible in our situation. Tour update

after a 3-opt move is also complicated because the direction of the tour may change on all

but the longest of the three involved paths. We have therefore limited the general 3-opt

procedure by requiring that at least one candidate edge is introduced by a 3-opt move.

The motivation for the Lin-Kernighanheuristic (Lin and Kernighan (1973)) is based

on experience gained from practical computations. Namely, one observes that the more

exible and powerful the possible tour modi�cations are, the better results are obtained

and that simple moves quickly run into local optima of only moderate quality that cannot

be left anymore. The natural consequence of simply applying k-opt for larger k cannot be

realized due to increasing running time. A complete check of the existence of an improving

k-move takes time O(n

k

). One can, of course, design restricted searches for higher values of

k in the same way as we did for k = 3. It is more powerful, however, to follow the approach

suggested by Lin and Kernighan. Their idea is based on the observation that sometimes a

modi�cation slightly increasing the tour length can open up new possibilities for achieving

considerable improvement afterwards. The basic principle is to build complicated tour

modi�cations that are composed of simple moves where not all of these moves necessarily

have to decrease the tour length. To obtain reasonable running times the e�ort to �nd

the parts of the composed move has to be limited. Many variants of this principle are

possible. We do not apply the original version of this algorithm which contains a 3-opt

component, but use a somewhat simpler version where the basic components are 2-opt

and node insertion moves. There are no signi�cant di�erences since we also have the usual
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3-opt exchange at hand.

Further details about these heuristics and their computational performance can be

found in Reinelt (1992) and J

�

unger, Reinelt & Rinaldi (1992).

If the �nal tour has smaller cost than the currently best known one, it is made the

incumbent solution and gub is updated.

Strategies for employing the heuristics

Since we are running our algorithm on a sequential machine we must take care of a proper

distribution of CPU time between lower bounding and upper bounding part. In addition,

the amount of work that is spent in the heuristics has to be controlled. Various strategies

are possible.

{ Fixed percentage of CPU time

We specify in advance a certain percentage of CPU time that is spent for upper

bound computations. Whenever, after having solved an LP, we have not reached

this percentage then we initiate an upper bound computation. This strategy has the

disadvantage that it is not exible and can miss LP solutions that would lead to an

improvement of the current tour. We observed that there is a signi�cant di�erence

among LP solutions with respect to suitability for our heuristic approach.

{ Fixed iteration number

In this case we would start an upper bound computation whenever a certain number

of LPs is solved. This strategy has the same disadvantage as the previous one and, in

addition, does not take care of the CPU time spent for the heuristics.

{ Dynamic strategy

Here we try to specify some guidelines for increasing the chance that an upper bound

computation is promising and should be initiated. In any case, after every LP the

candidate subgraph is updated, i.e., every active variable whose value is above some

certain threshold in the current LP (for example at least 0.6) is added to the candidate

set, and after a certain number of iterations the candidate set is reinitialized. This

way, important variables introduced by pricing can also enter the candidate set. Also,

after every LP, we perform the savings heuristic to exploit the LP solution. We avoid

trying to improve the same tour several times by using a hashing scheme to detect

identical tours. As hash key we use the length of the tour and the name of the heuristic

which is applied to this tour. We also inhibit the improvement heuristic if the starting

solution is much inferior than the best solution found so far, because we anticipate in

this case that our limited heuristics will not yield a better solution within moderate

time limits. Depending on the progress of the improvement heuristics we also decide

how much e�ort is spent in this part. For example, if we come close to the length

of the best known solution very fast, then we spent more CPU time and extend the

modi�cation possibilities of the Lin-Kernighan heuristic and the 3-opt exchange. If

progress is slow, then we terminate improvement early.
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Feedback to the cutting plane part

It should be noted that the tours found by the heuristics are not restricted to only using

edges of the candidate set. These edges are only considered with priority and lead to an

acceptable CPU time. Usually, heuristics will introduce edges that are not active in the

LP. We add these edges to the set of active variables. This is based on the assumption

that these edges are also important for the lower bound computations and would be added

to the LP in the pricing step anyway. This way we augment the set of active variables

without pricing.

We will report on computational aspects in the �nal section of this report.

2.4 Data Structures

A CPU time and memory sensitive implementation of data structures is crucial for an

e�cient branch & cut algorithm. Our general design philosophy is to rather spend more

memory space than to inhibit improvements in running time. Nevertheless some global

data structures have to be implemented very carefully.

Sparse graph

Essential for e�cient TSP solving by a branch & cut algorithm is the use of sparse graph

techniques. We select in INITIALIZE only a very small subset of the edges for our com-

putations: the set of active edges. This set is augmented by additional edges if either

this is necessary to guarantee correctness of the lower bounds on the complete graph by

PRICE OUT or ADD VARIABLES, or if an upper bounding method in EXPLOIT LP

considers some nonactive edges useful.

For the representation of the sparse graph we have to choose some format which saves

memory and enables us to perform e�ciently the operations scanning all incident edges of

a node, scanning all adjacent nodes of a node, determining the endnodes of an edge and

adding an edge to the sparse graph. We store the sparse graph in the six arrays tail,

head, nxtt, nxth, frst, cost.

tail[e] is the tail of edge e.

head[e] is the head of edge e.

nxtt[e] is the next edge incident to tail[e].

nxth[e] is the next edge incident to head[e].

cost[e] is the cost of edge e.

frst[v] is the �rst edge incident to node v.

All incidence lists terminate with a zero. If we initialize frst[v] = 0 for all nodes v, it

is easy to add an edge, if nvar variables have already been inserted into the sparse graph.

This is achieved by the following lines of C-code.

nxtt[nvar] = frst[t]; frst[t] = nvar; tail[nvar] = t;

nxth[nvar] = frst[h]; frst[h] = nvar; head[nvar] = h;

nvar++;
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The next program fragment shows how all adjacent nodes and all incident edges of a node v

can be scanned.

incidentedge = frst[v];

while (incidentedge) f

if (v == tail[incidentedge]) f

adjacentnode = head[incidentedge];

incidentedge = nxtt[incidentedge];

g

else f

adjacentnode = tail[incidentedge];

incidentedge = nxth[incidentedge];

g

g

For many data structures, e.g., some of the arrays of the sparse graph, we do not know

the actual required size at run time in advance. So we initially allocate memory, which is

su�cient according to our experience and extend it, if necessary.

Branch & cut nodes

Although a subproblem is completely de�ned by the �xed variables and the variables that

were set temporarily, it is necessary to store additional information at each node for an

e�cient implementation. Every branch & cut node has pointers to its father and sons.

A branch & cut node contains the arrays set of its set variables and setstat with the

corresponding statuses (settolowerbound, settoupperbound). The �rst variable in this

array is the branching variable of the father. There may be further entries to be made

in case of successful calls of SETBYREDCOST and SETBYLOGIMP while the node is

processed. The set variables of a branch & cut node are all the variables in the arrays set

of all nodes in the path from the root to the node.

In a branch & cut node we store the local lower bound of the corresponding subprob-

lem. After creation of a new leaf of the tree in BRANCH this is the bound of its father,

but after processing the node we can in general improve the bound and update this value.

Of course it would be correct to initialize the constraint system of the �rst LP of a new

selected node with the inequalities of the last processed node, since all generated constraints

are facets of the TSP-polytope. However, this would lead to tedious recomputations, and

it is not guaranteed that we can regenerate all heuristically separated inequalities. So it

is preferable to store in each branch & cut node pointers to those constraints in the pool,

which are in the constraint matrix of the last solved LP of the node. We initialize with

these constraints the �rst LP of each son of that node.

As we use an implementation of the simplex method to solve the linear programs, we

store the basis of the last processed LP of each node, i.e., the statuses of the variables and

the constraints. Therefore we can avoid phase 1 of the simplex algorithm, if we carefully
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restore the LP of the father and solve this �rst LP with the dual simplex method. Since the

last LP of the father and the �rst LP of the son di�er only by the set branching variable,

variables set by SETBYLOGIMP and variables, which have been �xed in the meantime,

the basis of the father is dual feasible for the �rst LP of the son.

Active nodes

In SELECT a node is extracted from the set of active nodes for further processing. Every

selection strategy de�nes an order on the active nodes. The minimal node is the next

selected one. The representing data structure must allow e�cient implementations of the

operations insert, extractmin and delete. The operation insert is used after creation of

two new branch & cut nodes in BRANCH, extractmin is necessary to select the next node

in SELECT and delete is called if we remove an arbitrary node from the set of active nodes

in CONTRAPRUNING. These operations are very well supported by a height balanced

binary search tree. We have implemented a red-black tree (Bayer (1972), Guibas and

Sedgewick (1978), see also Cormen, Leiserson and Rivest (1990)) which provides

O(logm) running time for these operations, if the tree consists of m nodes. Each node of

the red-black tree contains a pointer to the corresponding leaf of the branch & cut tree

and vice versa.

Temporarily set variables

A variable is either set if it is the branching variable or it is set by SETBYREDCOST and

SETBYLOGIMP. In CONTRAPRUNING it is essential to determine e�ciently all nodes

where a certain variable is set. To avoid scanning the complete branch & cut tree, we apply

a hash function to a variable right after setting and store in the slot of the hash table the

set variable and a pointer to the corresponding branch & cut node. So it is quick and easy

to �nd all nodes with the same setting by applying an appropriate hashing technique. We

have implemented a Fibonacci hash with chaining (see Knuth (1973)).

Contradictions occur quite rarely in the case of the traveling salesman problem, yet

CONTRAPRUNING might become more important for other problems.

Constraint pool

The data structure for the pool is very critical concerning running time and memory re-

quirements. It is not appropriate to store a constraint in the pool just as the corresponding

row of the constraint matrix, because we also have to know the coe�cients of variables

which are not active. This is necessary in PRICE OUT, to avoid recomputation from

scratch after addition of variables and in INITIALIZE NEW NODE. Furthermore such a

format would require too much memory. We use a node oriented sparse format. The pool

is represented by an array. Each component (constraint) of the pool is again an array,

which is allocated dynamically with the required size. This last feature is important, be-

cause the required size for a constraint of TSP(n) can range from four entries for a subtour

elimination constraint to about 2n entries for a comb constraint or a clique tree constraint.
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A subtour elimination constraint is de�ned by the node set W = fw

1

; : : : ; w

l

g. It is

su�cient to store the size of this node set and a list of the nodes.

2-matching constraints, comb constraints and clique tree constraints are de�ned by

a set of handles H = fH

1

; : : : ;H

r

g and a set of teeth T = fT

1

; : : : ; T

k

g, with the sets

H

i

= fh

i

1

; : : : ; h

i

n

i

g and T

j

= ft

j

1

; : : : ; t

j

m

j

g. In our pool format a clique tree constraint

with h handles and t teeth is stored as:

r; n

1

; h

1

1

; : : : ; h

1

n

1

; : : : ; n

r

; h

r

1

: : : ; h

r

n

r

; k;m

1

; t

1

1

; : : : ; t

1

m

1

; : : : ;m

k

; t

k

1

: : : ; t

k

m

k

For each constraint in the pool, we also store its type (subtour or clique tree).

This storage format of a pool constraint provides us with an easy method to compute

the coe�cient of every involved edge, even if it is not present in the sparse graph at

generation time. In case of a subtour elimination constraint the coe�cient of an edge is 1

if both endnodes of the edge belong to W , otherwise it is zero. The computation of the

coe�cients of other constraints is straightforward. A coe�cient of an edge of a 2-matching

constraint is 1 if both endnodes of the edge belong to the handle or to the same tooth, 0

otherwise. Some more care is needed for comb constraints and clique tree constraints. The

coe�cient of an edge is 2 if both endnodes belong to the same intersection of a handle and

a tooth, 1 if both endnodes belong to the same handle or (exclusive) to the same tooth

and 0 in all other cases.

Since the pool is the data structure using up the largest amount of memory, only those

inactive constraints are kept in the pool, which have been active, when the last LP of the

father of at least one active node has been solved. These inequalities are used to initialize

the �rst LP of a new selected node. In the current implementation the maximal number

of constraints in the pool is 50n for TSP(n). After each selection of a new node we try to

eliminate those constraints from the pool which are neither active at the current branch

& cut node nor necessary to initialize the �rst LP of an active node. If, nevertheless, more

constraints are generated than free slots of the pool are available, we remove nonactive

constraints from the pool. But now we cannot restore the complete LP of the father of an

active node. In this case we proceed as in INITIALIZE FIXING to initialize the constraint

matrix and to get a feasible basis.

3 Computational experiments

We have performed various computational tests in order to evaluate the practical perfor-

mance of our implementation. The parameters and strategies mentioned in the previous

section are tested in subsection 3.1. In subsection 3.2 we show computational results for

all instances of TSPLIB, which have between 100 and 4461 cities. For all of these problems

we give solutions with a prespeci�ed guarantee and prespeci�ed time bounds.

All computational experiments were carried out on a SUN SPARCstation 2 with

64 MB main memory under the operating system SunOS 4.1.2. We used the GNU C com-

piler with optimization option O2.
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3.1 Strategies and parameters

To test di�erent parameters and strategies we chose a test base of 17 problems from

TSPLIB and tried to solve these instances to optimality. We selected these problems by

the following criteria. First, the instances should have more than 100 cities, because all

smaller instances are very easy to solve except for pr76. Second, the problems should be of

di�erent size and structure. Third, the selected problems should be solvable in reasonable

time with our branch & cut code, because we wanted to perform a very large number of

tests. Of course, we cannot guarantee that the results would be the same for another test

set, especially if it consists of bigger instances. But we think that the results of these

experiments provide good base for further developments of branch & cut algorithms. In

addition to the obvious performance measure in terms of CPU time (in minutes:seconds,

abbreviated by T in the tables of this section) we also give for each run of an instance the

number of generated branch & cut nodes not including the root node (abbreviated by N

in the tables of this section). So the actual number of branch & cut nodes is N + 1. For

every tested parameter or strategy we chose a default value which is given in the respective

subsection. For the experiments with a single strategy or parameter all other strategies

and parameters kept their default value.

3.1.1 Enumeration strategies

There are three well-known enumeration strategies in branch & bound (branch & cut)

algorithms: depth-�rst search (DFS), breadth-�rst search (BRFS) and best-�rst search

(BEFS). We de�ne the level of a branch & cut node B as the number of edges on the

path from the root of the branch & cut tree to B. In case of depth-�rst search a branch

& cut node with maximum level in the branch & cut tree is selected from the set of active

nodes in SELECT, whereas in breadth-�rst search a subproblem with minimum level is

selected. In best-�rst search the \most promising" node becomes the current branch & cut

node. We think that the node with minimal local lower bound among all active nodes is

most promising. If in any of these three enumeration strategies two nodes have the same

priority, we select one for which the branching variable of its father is set to one, because

setting a variable to one has more inuence on the structure of a subproblem than setting

a variable to zero.

The results presented in Table I show that depth-�rst search is the worst enumeration

strategy, because the \risc" of spending a lot of time in a branch of the tree, which is

useless for computing upper and lower bounds, is very high. We have observed that often

the local lower bound of the current subproblem exceeds the length of an optimum tour,

however, this node cannot be fathomed, because no good upper bound is known. The same

phenomenon occurs also sometimes when using breadth-�rst search, but it is very rare if

we enumerate in best-�rst search order. Therefore we chose best-�rst search as default

strategy.

In order to get more insight into the performance of our bounding part and the e�-
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Table I

Enumeration strategies

Problem BEFS T BEFS N BRFS T BRFS N DFS T DFS N GUB T GUB N

gr120 0:14 2 0:14 2 0:14 2 0:12 2

bier127 0:17 0 0:17 0 0:17 0 0:10 0

pr152 2:21 24 1:57 24 2:04 24 4:03 28

rat195 6:52 56 3:58 24 5:34 40 3:33 24

d198 4:11 42 3:46 36 6:48 62 2:34 20

gr229 15:19 68 21:45 78 15:46 66 10:29 54

gil262 5:30 12 5:46 26 8:32 36 3:34 8

pr299 77:59 200 99:09 360 210:13 982 70:35 272

lin318 6:28 16 3:26 8 3:40 8 3:47 6

rd400 72:33 162 57:15 200 103:16 292 41:26 128

pr439 250:06 378 251:32 368 2590:31 4642 152:44 278

d493 88:09 60 117:05 212 1955:53 5014 84:09 66

att532 182:54 180 249:08 324 396:29 520 115:18 126

ali535 28:30 8 37:07 18 88:30 78 28:41 14

p654 11:52 34 7:31 22 13:10 34 13:39 66

gr666 148:46 70 115:57 76 213:10 174 49:30 22

rat783 25:28 12 49:03 44 30:10 24 21:10 6

Sum 927:29 1324 1025:00 1822 5644:22 11998 605:34 1120

ciency of the enumeration strategies we carried out the following experiment. We initialized

the variable global upper bound gub with the length of the known optimum tour. Now

the only task of the branch & cut algorithm was to prove optimality. The results are

presented in the last two columns of Table I (GUB). It is obvious that in this case the

enumeration strategy has no direct inuence on the running time. The number of branch

& cut nodes gives us an approximate lower bound on the number of branch & cut nodes

in any enumeration strategy in some sense. Our experiments show that this is only an

approximation for this lower bound, since in this experiment no variables are added to the

sparse graph by the upper bounding part, which inuences the cutting plane generation

procedures. For this experiment the computation of upper bounds was turned o�.

3.1.2 Separation strategies

Even though the separation of violated inequalities seems to be a very small part of the

algorithm (just the one box SEPARATE of the owchart of Figure 3), it is the most impor-

tant part. Only further improvements of the separation algorithms, i.e., implementation

of an exact separation method for 2-matching constraints, better separation heuristics for

comb and clique tree constraints and the development of separation algorithms for other

known facets of the traveling salesman polytope, can lead to a breakthrough to the next

order of magnitude of instances, which can be solved to optimality or for which better

lower bounds for the length of an optimum tour can be computed.

In Table II we compare the results achieved by the separation strategy outlined in

subsection 2.2 (1) with an implementation without the separation of comb constraints and

clique tree constraints from the pool (2) and with another implementation which does not

generate comb constraints and clique tree constraints at all (3). Already the lack of pool

separation made the performance worse, but without the separation of comb constraints
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and clique tree constraints some problems could not be solved (in reasonable time). The

default strategy is therefore strategy (1).

Table II

Separation strategies

Problem (1) T (1) N (2) T (2) N (3) T (3) N

gr120 0:14 2 0:14 2 0:13 2

bier127 0:17 0 0:17 0 0:15 2

pr152 2:21 24 2:10 26 1:27 26

rat195 6:52 56 6:40 56 5:33 64

d198 4:11 42 3:17 30 3:54 112

gr229 15:19 68 24:37 84 40:19 344

gil262 5:30 12 7:19 22 26:32 386

pr299 77:59 200 173:46 580 859:59 7242

lin318 6:28 16 5:42 10 2:58 8

rd400 72:33 162 100:57 252 496:09 3916

pr439 250:06 378 262:06 438 | |

d493 88:09 60 224:03 148 | |

att532 182:54 180 664:10 656 | |

ali535 28:30 8 41:48 18 98:15 136

p654 11:52 34 11:50 34 627:29 5682

gr666 148:46 70 116:28 44 398:58 466

rat783 25:28 12 38:02 30 774:03 1866

Sum 927:29 1324 1683:26 2430 3336:04 20252

3.1.3 Sparse graph

As the sparse graph we use the k

s

-nearest neighbour graph and add a tour to guarantee

that the resulting graph (denoted by k

s

nn in the tables) is Hamiltonian. The parameter k

r

for the reserve graph is always given by k

r

= k

s

+ 5. The results for k

s

= 2; 3 : : : ; 10; 20 of

Table III and Table IV show that di�erent sparse graphs led to di�erent performances of

the algorithm for a single problem but did not inuence the sum of the CPU times of all 17

instances signi�cantly for k

s

less or equal than 10. The reason is that after several calls of

the routines PRICE OUT, FIXBYREDCOST, SETBYREDCOST we automatically get an

appropriate set of variables. However, if the initial sparse graph was too large, the number

of those active variables, which were neither �xed nor set until to the termination of the

algorithm, was very large (see Table V). Hence the solution of the LPs, the computation

of upper bounds and the separation of violated inequalities was slowed down. As default

value for k

s

we chose 5.

3.1.4 Tailing-o�

We try to leave the bounding part if during the last k solved LPs the local lower bound

llb did not increase by at least p%. First we tested four di�erent parameters p = 10

�1

(1), p = 2:5 � 10

�3

(2), p = 10

�3

(3) and p = 10

�8

(4) for �xed k = 6 (see Table VI).

For even smaller values of p we got the same results as for p = 10

�8

. The default value is

p = 2:5 � 10

�3

.
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Table III

Sparse graph (part 1)

Problem 2nn T 2nn N 3nn T 3nn N 4nn T 4nn N 5nn T 5nn N 6nn T 6nn N

gr120 0:19 0 0:15 0 0:18 0 0:14 2 0:18 0

bier127 0:19 0 0:19 0 0:18 0 0:17 0 0:18 0

pr152 3:38 16 3:01 34 3:26 34 2:21 24 3:17 24

rat195 4:55 34 10:58 82 4:33 28 6:52 56 6:56 50

d198 3:08 26 2:57 26 2:51 32 4:11 42 2:40 26

gr229 16:46 56 22:15 84 26:27 68 15:19 68 15:21 58

gil262 9:04 30 5:21 18 9:32 38 5:30 12 3:25 8

pr299 86:18 288 71:59 170 86:13 260 77:59 200 60:40 182

lin318 5:10 12 4:02 8 4:32 8 6:28 16 6:32 16

rd400 73:40 180 49:09 142 48:40 132 72:33 162 81:25 190

pr439 135:51 168 141:47 228 173:03 260 250:06 378 281:15 418

d493 100:21 70 78:09 56 118:04 68 88:09 60 86:34 50

att532 295:22 264 256:36 258 418:30 384 182:54 180 211:10 182

ali535 47:41 18 35:25 12 47:11 14 28:30 8 89:11 22

p654 14:24 42 18:52 88 11:23 28 11:52 34 3:16 2

gr666 131:34 44 97:38 46 108:46 56 148:46 70 155:17 68

rat783 21:58 8 19:44 8 34:37 28 25:28 12 38:28 16

Sum 950:28 1256 818:27 1260 1098:24 1438 927:29 1324 1046:03 1324

Table IV

Sparse graph (part 2)

Problem 7nn T 7nn N 8nn T 8nn N 9nn T 9nn N 10nn T 10nn N 20nn T 20nn N

gr120 0:16 0 0:17 0 0:27 4 0:24 6 0:33 6

bier127 0:18 0 0:20 0 0:20 0 0:20 0 0:22 0

pr152 2:56 24 2:28 24 2:09 14 4:04 40 5:00 10

rat195 9:43 70 11:01 84 7:05 54 10:55 84 11:31 54

d198 3:43 32 4:16 38 3:58 44 3:38 26 8:09 28

gr229 18:37 72 20:11 74 18:54 68 35:58 138 26:27 68

gil262 5:53 14 5:59 16 10:13 26 7:57 10 11:57 20

pr299 64:14 180 96:22 238 120:57 326 106:34 238 135:58 248

lin318 5:24 12 6:17 12 10:19 16 6:06 12 8:36 12

rd400 68:52 194 74:01 184 56:05 108 68:01 130 105:02 132

pr439 164:48 218 166:52 202 185:52 256 150:42 192 186:44 164

d493 69:33 48 103:59 64 157:13 106 103:53 64 119:41 52

att532 216:14 186 482:52 344 380:49 314 366:34 272 285:23 164

ali535 40:52 14 34:44 10 53:38 14 53:27 8 82:34 10

p654 134:48 610 10:44 34 13:50 28 53:53 172 5:43 0

gr666 176:17 68 136:20 44 163:51 86 163:52 66 179:46 52

rat783 36:22 20 34:13 28 39:31 24 33:41 28 62:08 18

Sum 1018:50 1762 1190:56 1396 1225:11 1488 1169:59 1486 1235:34 1486

In a second experiment we tried to abort the computation of upper and lower bounds

for a subproblem if during the last k solved LPs the local lower bound llb did not increase

by at least 2:5 � 10

�3

% for k = 3; 6; 10; 20; 100 (see Table VII). The default value is k = 6.

In contrast to Padberg and Rinaldi (1991) we could not observe any signi�cant

inuence of the parameters p and k for tailing-o� on the running time. However, we still use

tailing-o� in our implementation as \emergency exit" of the cutting plane phase, since the

behaviour of the separation algorithms is not predictable. Better separation techniques,

as used by Padberg and Rinaldi (1991), may make tailing-o� more important.
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Table V

Number of active variables

Problem 2nn 3nn 4nn 5nn 6nn 7nn 8nn 9nn 10nn 20nn

gr120 454 323 345 215 460 521 590 184 184 212

bier127 419 437 475 527 581 640 722 797 877 1744

pr152 647 678 664 697 707 675 680 683 773 732

rat195 502 551 535 550 646 631 704 701 704 748

d198 504 527 591 589 595 711 744 780 813 617

gr229 753 627 654 699 737 794 903 928 956 1017

gil262 672 636 654 692 674 694 691 709 722 782

pr299 992 1000 1002 1026 1032 974 1304 1495 1337 1814

lin318 676 719 733 782 803 764 781 763 771 775

rd400 1123 1245 1226 1381 1360 1391 1568 1724 1772 1804

pr439 1676 1643 1793 1858 2008 2102 2329 2566 2735 4282

d493 1483 1414 1481 1515 1652 1966 1105 1968 2079 2098

att532 1907 1541 1674 1795 2084 2212 2629 2873 3250 3862

ali535 1547 1456 1505 1521 1561 1815 1913 1876 2020 2793

p654 1309 1365 1256 1900 2169 2425 2079 2784 2990 7746

gr666 2223 1767 1895 2054 2331 2759 3000 3370 3375 4304

rat783 1547 1589 1702 1562 1776 1569 1890 1664 1890 1783

Sum 18434 17518 18185 19363 21176 22643 23632 25865 27248 37113

Table VI

Tailing-o�, variation of p

Problem (1) T (1) N (2) T (2) N (3) T (3) N (4) T (4) N

gr120 0:14 2 0:14 2 0:14 2 0:14 2

bier127 0:17 0 0:17 0 0:17 0 0:17 0

pr152 2:21 24 2:21 24 2:21 24 2:21 24

rat195 6:52 56 6:52 56 6:52 56 6:52 56

d198 4:11 42 4:11 42 4:11 42 4:11 42

gr229 15:21 68 15:19 68 15:21 68 15:21 68

gil262 5:30 12 5:30 12 5:30 12 5:30 12

pr299 110:49 354 77:59 200 77:56 200 77:58 200

lin318 4:35 10 6:28 16 6:28 16 6:28 16

rd400 78:34 162 72:33 162 72:33 162 72:33 162

pr439 208:06 286 250:06 378 250:11 378 250:11 378

d493 88:10 60 88:09 60 88:11 60 88:13 60

att532 146:20 152 182:54 180 183:43 180 168:07 166

ali535 37:11 18 28:30 8 28:35 8 28:27 8

p654 11:52 34 11:52 34 11:52 34 11:52 34

gr666 161:14 78 148:46 70 162:53 82 162:52 82

rat783 36:33 18 25:28 12 25:32 12 25:25 12

Sum 918:10 1376 927:29 1324 942:40 1336 926:52 1322

3.1.5 Additional pricing

After every l LP-solutions during the computation of local lower bounds for a branch

& cut node we perform an additional pricing step. In Table VIII results are given for

l = 1; 2; 5; 10;1.

It turned out that additional pricing did not inuence the running time of our im-

plementation. However, there are three reasons why we still perform additional pricing

steps. First, if no variable is added to the sparse graph after PRICE OUT, the global

lower bound may change and hence the guarantee requirements may be reached, if no
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Table VII

Tailing-o�, variation of k

Problem 3 T 3 N 6 T 6 N 10 T 10 N 20 T 20 N 100 T 100 N

gr120 0:14 2 0:14 2 0:14 0 0:14 0 0:14 2

bier127 0:17 2 0:17 0 0:18 0 0:17 0 0:17 0

pr152 4:37 68 2:21 24 2:27 24 2:29 24 2:25 24

rat195 5:07 38 6:52 56 6:10 40 6:21 40 6:10 40

d198 3:43 52 4:11 42 4:37 42 4:31 42 4:30 42

gr229 20:37 86 15:19 68 16:32 68 17:30 82 18:04 66

gil262 7:08 30 5:30 12 9:46 36 9:49 36 9:40 36

pr299 153:41 436 77:59 200 79:03 200 81:03 200 60:28 170

lin318 4:13 12 6:28 16 6:36 16 6:41 16 6:39 16

rd400 56:37 176 72:33 162 74:09 162 75:34 162 73:05 162

pr439 183:58 316 250:06 378 257:16 378 258:33 378 151:32 270

d493 71:04 98 88:09 60 94:23 60 64:37 50 64:53 46

att532 207:28 298 182:54 180 174:03 166 221:55 206 356:02 306

ali535 41:46 40 28:30 8 30:32 8 57:58 18 36:49 14

p654 12:19 34 11:52 34 12:21 34 12:19 34 10:58 38

gr666 103:24 84 148:46 70 178:30 82 178:06 82 132:14 56

rat783 48:35 56 25:28 12 26:12 12 25:43 12 25:19 12

Sum 924:48 1828 927:29 1324 973:09 1328 1023:40 1382 959:19 1382

computation to optimality is desired. Second, if better separation algorithms are used,

the number of branch & cut nodes decreases signi�cantly. Often a problem can be solved

(without branching) in the root node of the branch & cut tree. In this case additional

pricing steps may be quite helpful. Third, the time necessary for PRICE OUT is quite

small, i.e., between 1% and 2% of the total running time if we call PRICE OUT every 5

solved LPs. Therefore l = 5 is the default parameter.

Table VIII

Additional pricing

Problem 1 T 1 N 2 T 2 N 5 T 5 N 10 T 10 N 1 T 1 N

gr120 0:18 6 0:18 6 0:14 2 0:18 2 0:14 2

bier127 0:16 0 0:18 0 0:17 0 0:17 0 0:16 0

pr152 3:09 40 2:21 20 2:21 24 2:26 32 1:53 22

rat195 7:29 46 7:44 54 6:52 56 12:54 126 7:06 46

d198 3:28 24 4:13 36 4:11 42 3:27 22 4:32 32

gr229 17:36 50 17:16 58 15:19 68 19:48 88 16:21 58

gil262 6:16 18 9:07 32 5:30 12 5:32 20 9:06 46

pr299 59:08 146 71:27 184 77:59 200 120:23 296 114:21 384

lin318 7:00 14 6:51 16 6:28 16 3:40 10 6:59 16

rd400 61:42 170 51:53 114 72:33 162 77:37 190 60:40 154

pr439 184:26 246 168:47 222 250:06 378 152:21 212 176:33 254

d493 140:05 92 100:39 92 88:09 60 79:04 96 100:00 132

att532 255:17 194 169:59 142 182:54 180 177:14 178 256:57 260

ali535 58:34 14 36:26 16 28:30 8 34:53 24 50:11 28

p654 11:07 42 8:51 30 11:52 34 14:40 48 9:10 18

gr666 122:54 48 113:11 36 148:46 70 105:28 56 111:40 56

rat783 44:41 24 64:52 60 25:28 12 26:58 24 30:48 28

Sum 983:26 1174 834:13 1118 927:29 1324 837:00 1424 956:47 1424

3.1.6 Selection of the branching variable

We tested 4 di�erent strategies for the selection of the branching variable. Let x be the
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solution of the last solved LP.

(1) Select a variable with value close to 0:5 which has a big objective function coe�cient

in the following way. Find L and H with L = maxfx

e

j x

e

� 0:5; e 2 Eg and

H = minfx

e

j x

e

� 0:5; e 2 Eg. Let C = fe 2 E j 0:75L � x

e

� H + 0:25(1�H)g be

the set of variables with value \close" to 0:5. From the set C we select the variable

with maximum cost, i.e., with maximum objective function coe�cient. This method

is similar to the one given in Padberg and Rinaldi (1991).

(2) Select the fractional variable which has maximum objective function coe�cient.

(3) If there are fractional variables which belong to the currently best known tour, select

the one with maximum cost of them, otherwise, apply strategy (1).

(4) Select that fractional variable which is closest to one, i.e., �nd an edge e

?

with x

e

?

=

maxfx

e

j x

e

� 0:999g.

Table IX

Selection of the branching variable

Problem (1) T (1) N (2) T (2) N (3) T (3) N (4) T (4) N

gr120 0:14 2 0:14 0 0:14 2 0:19 8

bier127 0:17 0 0:17 0 0:17 0 0:17 0

pr152 2:21 24 3:13 34 2:10 24 46:12 1102

rat195 6:52 56 10:49 90 10:25 82 30:10 388

d198 4:11 42 3:31 26 3:00 36 14:31 118

gr229 15:19 68 19:40 102 18:48 76 348:39 2522

gil262 5:30 12 7:30 22 18:24 102 25:15 208

pr299 77:59 200 160:56 624 193:03 966 | |

lin318 6:28 16 10:55 36 10:35 30 145:01 908

rd400 72:33 162 115:45 390 262:36 924 | |

pr439 250:06 378 552:56 1436 | | | |

d493 88:09 60 114:19 120 73:12 58 | |

att532 182:54 180 | | 2732:21 3516 | |

ali535 28:30 8 61:54 52 39:28 16 | |

p654 11:52 34 18:34 64 44:17 154 | |

gr666 148:46 70 168:23 134 169:44 110 | |

rat783 25:28 12 61:00 100 35:03 30 | |

Sum 927:29 1324 1309:56 3230 3613:37 6126 610:24 5254

The experiments (see Table IX) showed the good performance of the strategy (1). We

assume that the reason is that there is a high \uncertainty" at a variable with value close

to 0:5. The results of strategy (2) indicate that branching on an \expensive" variable is

preferable, because this may have more inuence on the objective function value of the

sons of the current branch & cut node. The selection of the branching variable according

to strategy (3) is certainly good if we have already found an optimum tour, but since this

cannot be guaranteed, the risc to work in a \bad" branch of the branch & cut tree is quite

high. With strategy (4) several problems could not be solved to optimality. Strategy (1)

is the default strategy.

3.1.7 Upper bounding strategies

In view of the enormous choice of possible upper bounding strategies we had to limit our
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testing to a few reasonable experiments. Already for the Lin-Kernighan heuristic several

parameters can be modi�ed, e.g., the maximal number of iterations, the maximal number

of exchanges in a sequence, the number of moves that are examined at the current terminal

node of the exchange sequence and the level to which backtracking is used. We show the

results of three di�erent dynamic improvement strategies.

Table X

Upper bounding strategies

Problem (1) T (1) N (2) T (2) N (3) T (3) N

gr120 0:14 2 0:17 2 0:12 0

bier127 0:17 0 0:13 0 0:15 0

pr152 2:21 24 2:35 24 2:06 24

rat195 6:52 56 5:04 50 9:18 68

d198 4:11 42 3:29 28 3:28 36

gr229 15:19 68 18:27 68 16:30 70

gil262 5:30 12 7:19 22 5:13 16

pr299 77:59 200 60:11 216 65:03 180

lin318 6:28 16 4:47 12 6:26 20

rd400 72:33 162 52:49 140 62:01 198

pr439 250:06 378 282:21 398 338:05 436

d493 88:09 60 127:25 84 86:47 62

att532 182:54 180 462:47 430 235:41 254

ali535 28:30 8 35:52 16 45:23 20

p654 11:52 34 11:34 34 11:46 38

gr666 148:46 70 103:42 48 87:19 32

rat783 25:28 12 38:01 16 42:09 32

Sum 927:29 1324 1216:53 1588 1017:42 1486

We reinitialize the candidate set for the improvement heuristics every r LP solutions

and start a series of improvement heuristics only every i solved LPs.

(1) We set r = 10 and i = 5. If the starting solution was more than 15% longer than the

currently best known tour we aborted the improvement at once. Otherwise we called

a version of the Lin-Kernighan heuristic, which used only 2-opt moves. Then another

more sophisticated version of the Lin-Kernighan heuristic was applied. Afterwards

the parameters of the last heuristic were modi�ed for a more intensive search, where

also node insertion moves might be used in an exchange.

(2) Like (1), but the improvement was aborted after the �rst application of the Lin-Ker-

nighan heuristic.

(3) Like (1), but we did additional work every r solved LPs, if the tour after the three

calls of the Lin-Kernighan heuristic was not longer than 0:5% but still worse than the

currently best known tour. Then transitive edges were added to the candidate set,

i.e., if the edges (j; k) and (k; l) belonged to the candidate set then also the edge (j; l)

was added. Again a version of the Lin-Kernighan heuristic was applied and �nally

several three-opt exchanges were used to �nd a better tour. We set the parameters

r = 20 and i = 10.

Strategy (2) worked quite well for some problems in comparison to strategy (1), but Table X

shows that this quick strategy was not good enough to �nd good upper bounds for some
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hard instances. Strategy (3) was inferior to strategy (1) and further experiments showed

that the degradation in performance by spending still more CPU time in the improvement

part (e.g., by modifying the parameters r and i) was not compensated by a reduction of

the number of branch & cut nodes. Strategy (1) is the default strategy.

3.1.8 Default settings of parameters

The outcome of the experiments might suggest that di�erent default settings might be

preferable, yet �nding a good default setting might require many more iterations through

the above described experiments.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

27500

27600

27700

27800

27900

time in
minutes

objective function
value

upper bounds (tour lengths)

lower bounds

27686

Figure 4. Gap versus time plot for att532

3.2 Guaranteed solutions

Let glb be a global lower bound and gub be a the length of a known tour as speci�ed in

section 2. We denote by opt the length of an optimum tour. In this section we distinguish

between the guarantee and the quality of a given tour. The guarantee g is de�ned as

g =

gub� glb

glb

� 100

and expresses that the tour with length gub is at most g% longer than an optimum tour.

The quality q is de�ned as

q =

gub� opt

opt

� 100
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and expresses that the tour with length gub is exactly q% longer than an optimum tour.

The length of an optimum tour of a problem (if it is known) can be found in TSPLIB.

A branch and cut algorithm as outlined in the previous section produces a sequence

of increasing global lower bounds as well as a sequence of tours of decreasing lengths.

Therefore, at any point during the computation we have a tour along with a certain

guarantee.

We performed the following experiments using the default parameters and strategies

of subsection 3.1. We stopped our branch & cut algorithm as soon as a guarantee which

is smaller than g (guarantee reached in the owchart of Figure 3) could be given. Table

XI shows the results for g = 10 for all instances of TSPLIB between 100 and 4461 cities.

We can give a �rst global lower bound if after a pricing step no variable has to be

added. Additional pricing steps are performed every 5 solved LPs per default. So it may

last several minutes until a �rst guarantee can be computed. At this time the gap between

the lower and upper bound is often already quite small. In Table XI the actual guarantee

is less than 5% or even 2% for most problems, even though we required only a guarantee

of 10%. For two instances we had to perform a second experiment for g = 5% (see Table

XII). For those problems for which we could not give a guarantee of 1% we executed a

third experiment with g = 1%. The results are presented in Table XIII. For some problem

we could not reach a guarantee less than 1% in less than four hours of CPU time. Since

for some problems an optimum solution is not known, we could not give the quality for all

instances.

For every problem it is easy to give a guarantee of 10%, and also the CPU time to

give a guarantee of 1% is very small for most instances. But if we compare the time spent

to give a 1%-guarantee and the time to solve a problem to optimality, we see that it is

very time consuming to close this last gap.

A typical example of the decreasing upper and increasing lower bounds is shown in

Figure 4 for the problem att532. We show the development of the upper and lower bounds

during the �rst 15 minutes of the computation. The jumps in the lower bounds are due

to the fact that the validity of the LP-value as a global lower bound for the length of a

shortest tour is only guaranteed after a pricing step in which all nonactive variables price

out correctly.

In another experiment we computed upper and lower bounds within a given maximal

CPU time. We stopped the computation after t minutes, if the problem had not been

solved to optimality yet. In Table XIV we present quality and guarantee for t = 7:5; 15; 30

and 60. If we could solve a problem to optimality for a CPU time bound t, the following

columns contain only blanks. If there is dash in a quality column, an optimum solution is

not known.

For some problems no valid global lower bound was known, when we wanted to abort

the computation. In this case we performed a pricing step. If variables had to be added we

resolved the LP. This process was repeated until a �rst global lower bound was found. If we

wanted to abort the computational process after 7.5 minutes, this iteration was necessary
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Table XI

Guarantee 10% (part 1)

Problem T N Guarantee Quality

kroA100 0:05 0 0.45 0.11

kroB100 0:07 0 0.57 0.00

kroC100 0:03 0 2.03 1.29

kroD100 0:05 0 0.47 0.07

kroE100 0:03 0 1.38 0.28

rd100 0:04 0 0.00 0.00

eil101 0:03 0 0.36 0.16

lin105 0:03 0 0.00 0.00

pr107 0:04 0 0.00 0.00

gr120 0:07 0 0.26 0.13

pr124 0:37 4 0.46 0.08

bier127 0:11 0 0.19 0.00

pr136 0:03 0 3.58 2.51

gr137 0:16 0 0.63 0.34

pr144 0:24 2 0.12 0.00

kroA150 0:11 0 1.47 0.92

kroB150 0:12 0 1.95 1.01

pr152 0:14 0 0.71 0.00

u159 0:07 0 1.15 0.91

rat195 0:24 0 1.48 0.77

d198 1:09 0 0.47 0.25

kroA200 0:23 0 0.89 0.28

kroB200 0:16 0 0.90 0.59

gr202 0:22 0 0.15 0.05

ts225 0:08 0 8.81 2.15

pr226 0:30 0 0.01 0.00

gr229 0:53 0 1.39 0.69

gil262 0:33 0 0.59 0.13

pr264 0:35 2 0.02 0.00

pr299 0:41 0 1.92 0.72

lin318 1:51 0 0.56 0.49

rd400 0:31 0 1.46 0.84

fl417 1:38 0 0.80 0.42

gr431 4:35 0 0.57 0.23

pr439 4:46 0 0.74 0.20

pcb442 0:49 0 0.69 0.56

d493 1:50 0 0.24 0.02

att532 5:30 0 1.19 0.70

ali535 9:43 0 0.81 0.64

u574 4:12 0 0.20 0.08

rat575 1:50 0 1.00 0.62

p654 3:03 0 0.13 0.07

d657 2:44 0 1.08 0.65

gr666 8:46 0 0.42 0.17

u724 4:10 0 0.74 0.50

rat783 4:50 0 0.22 0.14

dsj1000 14:25 0 1.54 1.30

pr1002 11:11 0 1.33 1.08

u1060 11:20 0 0.82 0.54

vm1084 8:32 0 1.67 0.91

pcb1173 8:15 0 0.65 0.38

d1291 216:48 0 1.55 |

rl1304 34:01 0 0.90 0.27
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Table XI

Guarantee 10% (part 2)

Problem T N Guarantee Quality

rl1323 56:33 0 1.32 0.60

nrw1379 11:12 0 0.87 0.74

fl1400 17:23 0 6.20 |

u1432 15:59 0 0.38 0.30

fl1577 58:58 0 1.54 |

d1655 85:34 0 0.30 0.09

vm1748 12:37 0 2.29 1.47

u1817 57:38 0 1.64 |

rl1889 65:50 0 1.56 |

d2103 50:38 0 2.87 |

u2152 68:30 0 1.51 |

u2319 20:17 0 0.36 |

pr2392 21:33 0 3.55 2.93

pcb3038 69:38 0 1.09 0.77

fl3795 417:58 0 2.97 |

fnl4461 184:16 0 0.62 |

Table XII

Guarantee 5%

Problem T N Guarantee Quality

ts225 5:05 14 4.78 1.14

fl1400 19:33 0 4.23 |

for 38 instances and lasted between 15 and 210 seconds for the instances with less than

3000 cities. However, for the three largest problems (pcb3038, fl3795, fnl4461) this

iteration needed between 270 and 420 seconds. For t = 60 we had to do these repeated

pricing operations only for seven problems.

In the recent years many new algorithmic approaches to the TSP (and other combi-

natorial optimization problems) have been extensively discussed in the literature. Many of

them produce surprisingly good solutions. However, the quality and guarantee could only

be assessed because optimum solutions or tight lower bounds, respectively, were known.

When optimization problems arise in practice we have to have con�dence in the guar-

antee of the solutions. Giving guarantees becomes possible by reasonably e�cient calcula-

tions of lower bounds. The best such bounds have always been produced by some variant

of the LP relaxation method. The branch and cut approach meets the goals of producing

good solutions as well as reasonable guarantees at the same time.
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Table XIII

Guarantee 1%

Problem T N Guarantee Quality

kroC100 0:07 0 0.92 0.50

kroE100 0:05 0 0.79 0.00

pr136 0:09 0 0.53 0.03

kroA150 0:28 0 0.94 0.68

kroB150 0:21 0 0.98 0.34

u159 0:09 0 0.24 0.00

rat195 0:45 0 0.99 0.52

ts225 | { | |

pr226 0:30 0 0.01 0.00

gr229 2:04 2 0.43 0.08

pr299 5:53 2 0.81 0.36

rd400 1:03 0 0.72 0.11

att532 7:25 0 0.93 0.44

d657 3:41 0 0.68 0.25

dsj1000 25:54 0 0.75 0.56

pr1002 33:55 0 0.99 0.82

vm1084 46:22 0 0.98 0.45

d1291 | | |

rl1323 146:30 0 0.91 0.34

fl1400 | | |

fl1577 | | |

vm1748 230:50 0 0.96 0.60

u1817 | { | |

rl1889 | { | |

d2103 | { | |

u2152 | { | |

pr2392 | { | |

pcb3038 121:36 0 0.93 0.63

fl3795 | { | |
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Prespeci�ed time (part 2)

Problem g 7.5 q 7.5 g 15 q 15 g 30 q 30 g 60 q 60

rl1323 2:72 1:51 2:47 1:51 1:87 1:03 1:31 0:60

nrw1379 0:91 0:73 0:86 0:73 0:83 0:73 0:52 0:43

fl1400 6:73 | 6:20 | 4:10 | 4:10 |

u1432 1:28 1:10 0:38 0:30 0:37 0:30 0:36 0:30

fl1577 7:63 | 3:38 | 2:19 | 1:54 |

d1655 3:37 2:65 1:03 0:61 0:62 0:27 0:42 0:19

vm1748 2:47 1:48 2:17 1:47 2:06 1:47 2:01 1:47

u1817 3:27 | 2:38 | 1:83 | 1:64 |

rl1889 4:60 | 3:88 | 1:67 | 1:57 |

d2103 3:81 | 3:35 | 2:89 | 2:86 |

u2152 3:72 | 1:66 | 1:54 | 1:51 |

u2319 0:44 | 0:36 | 0:30 | 0:24 |

pr2392 3:93 2:85 3:58 2:85 3:51 2:85 2:91 2:37

pcb3038 4:63 3:85 3:81 3:16 1:70 1:28 1:09 0:77

fl3795 25:27 | 11:81 | 7:59 | 6:38 |

fnl4461 12:66 | 9:84 | 1:74 | 1:47 |

G. Clarke and J.W. Wright (1964), Scheduling of vehicles from a central depot to a number of delivery

points, Operations Research 12, 568{581.

T.H. Cormen, C.E. Leiserson and R.L. Rivest (1990), Introduction to algorithms, MIT Press, Cambridge.

H. Crowder and M.W. Padberg (1980), Solving large-scale symmetric traveling salesman problems to

optimality, Management Science 26, 495{509.

G.B. Dantzig, D.R. Fulkerson and S.M. Johnson (1954), Solution of a large-scale traveling salesman

problem, Operations Research 2, 393{410.

U. Derigs and A. Metz (1991), Solving (large-scale) matching problems combinatorically, Mathematical

Programming 50, 113{121.

J. Edmonds (1965), Maximum matching and a polyhedron with 0,1-vertices, Journal of Research of the

National Bureau of Standards B 69, 125{130.

R.E. Gomory (1958), Outline of an algorithm for integer solutions to linear programs, Bulletin of the

American Mathematical Society 64, 275{278.

R.E. Gomory (1960), Solving linear programming problems in integers, Proceedings of the Symposium on

Applied Mathematics 10, 211{215.

R.E. Gomory (1963), An algorithm for integer solutions to linear programs, in: R.L. Graves and P. Wolfe

(eds.), Recent Advances in Mathematical Programming, McGraw Hill, New York, pp. 269{302.

M. Gr�otschel (1977), Polyedrische Charakterisierungen kombinatorischer Optimierungsprobleme, Hain,

Meisenheim am Glan.

M. Gr�otschel (1980), On the symmetric traveling salesman problem: solution of a 120-city problem,

Mathematical Programming Studies 12, 61{77.

M. Gr�otschel and O. Holland (1991), Solution of large-scale symmetric traveling salesman problems,

Mathematical Programming 51, 141{202.

M. Gr�otschel, M. J�unger and G. Reinelt (1984), A cutting plane algorithm for the linear ordering problem,

Operations Research 32, 1195{1220.

M. Gr�otschel and M.W. Padberg (1979), On the symmetric traveling salesman problem II: lifting theorems

and facets, Mathematical Programming 16), 281{302.

M. Gr�otschel and W.R. Pulleyblank (1986), Clique tree inequalities and the symmetric traveling salesman

problem,Mathematics of Operations Research 11, 537{569.

L.J. Guibas and R. Sedgewick (1978), A diochromatic framework for balanced trees, in: Proceedings of

the 19th annual symposium on foundations of computer science, IEEE Computer Society, 8{21.

M. Held and R.M. Karp (1971), The traveling salesman problem and minimum spanning trees: Part II,

Mathematical Programming 1, 6{25.

44



D.S. Johnson (1990), Local Optimization and the traveling salesman problem, Proceedings of the 17th col-

loquium on automata, languages and programming, Springer Verlag, 446{461.

M. J�unger and P. Mutzel (1993), Solving the maximum weight planar subgraph problem by branch & cut,

Proceedings of the third IPCO conference, 479{492.

M. J�unger, G. Reinelt and G. Rinaldi (1992), The traveling salesman problem, Report No. 92.113,

Angewandte Mathematik und Informatik, Universit�at zu K�oln, to apear in M. Ball, T. Magnanti,

C.L. Monma and G. Nemhauser (eds.), Handbook on Operations Research and Management Sciences:

Networks, North Holland.

D.E. Knuth (1973), The art of computer programming, volume 3, sorting and searching, Addison-Wesley,

Reading, Massachusetts.

S. Lin and B.W. Kernighan (1973), An e�ective heuristic algorithm for the traveling salesman problem,

Operations Research 21, 498{516.

R. Marsten (1981), The design of the XMP linear programming library, ACM Transactions of Mathemat-

ical Software 7, 481{497.

D.L. Miller, J.F. Pekny and G.L. Thompson (1991), An exact branch and bound algorithm for the sym-

metric tsp using a symmetry relaxed two-matching relaxation, Talk presented at the 14th International

Symposium on Mathematical Programming, Amsterdam.

G.L. Nemhauser and L.A. Wolsey (1988), Integer and combinatorial optimization, John Wiley & Sons,

Chichester.

M.W. Padberg and S. Hong (1980), On the symmetric traveling salesman problem: a computational study,

Mathematical Programming Studies 12, 78{107.

M.W. Padberg and M.R. Rao (1982), Odd minimumcut sets and b-matchings,Mathematics of Operations

Research 7, 67{80.

M.W. Padberg and G. Rinaldi (1987), Optimization of a 532 city symmetric traveling salesman problem

by branch and cut, Operations Research Letters 6, 1{7.

M.W. Padberg and G. Rinaldi (1990), Facet identi�cation for the symmetric traveling salesman polytope,

Mathematical Programming 47, 219{257.

M.W. Padberg and G. Rinaldi (1991), A branch and cut algorithm for the resolution of large-scale sym-

metric traveling salesman problems, SIAM Review 33, 60{100.

G. Reinelt (1991a), TSPLIB { A traveling salesman problem library, ORSA Journal on Computing 3,

376{384.

G. Reinelt (1991b), TSPLIB { Version 1.2, Report No. 330, Schwerpunktprogramm der Deutschen For-

schungsgemeinschaft, Universit�at Augsburg.

G. Reinelt (1992), Fast heuristics for large geometric traveling salesman problems, ORSA Journal on

Computing 4, 206{217.

T. Volgenant and R. Jonker (1982), A branch and bound algorithm for the symmetric traveling salesman

problem based on the 1-tree relaxation, European Journal of Operational Research 9, 83{89.

45


