
Noname manuscript No.
(will be inserted by the editor)

On-line Bin Packing with Restricted Repacking

János Balogh · József Békési · Gábor

Galambos · Gerhard Reinelt

the date of receipt and acceptance should be inserted later

Abstract Semi-online algorithms for the bin-packing problem allow, in contrast
to pure on-line algorithms, the use of certain types of additional operations for
each step. Examples include repacking, reordering or lookahead before packing
the items. Here we define and analyze a semi-online algorithm where for each step
at most k items can be repacked, for some positive integer k. We prove that the
upper bound for the asymptotic competitive ratio of the algorithm is a decreasing
function of k, which tends to 3/2 as k goes to infinity. We also establish lower
bounds for this ratio and show that the gap between upper and lower bounds is
relatively small.
Keywords: bin-packing, semi-online algorithm, worst-case behaviour, competitive
analysis.

1 Introduction

Bin-packing is a well-known combinatorial optimization problem. In the classical
one-dimensional problem a list L = {x1, x2, . . . , xn} of n items (or elements), and
an infinite set of unit capacity bins is given. Each item x has a size(x) where
size(x) ∈ (0, 1]. The problem consists of assigning each item to a unique bin such
that the sum of the items in a bin does not exceed the bin capacity and such
that the total number of bins used is as small as possible. The problem is known

This study was supported by the HSC-DAAD Hungarian-German Research Exchange Pro-
gramme (Project P-MÖB/837) and Gyula Juhász Faculty of Education, University of Szeged
(Project CS-001/2010).

J. Balogh · J. Békési · G. Galambos
Department of Applied Informatics, Gyula Juhász Faculty of Education,
University of Szeged, H-6701 Szeged, POB 396, Hungary,
E-mail: {balogh,bekesi,galambos}@jgypk.u-szeged.hu,

G. Reinelt
Institute of Computer Science, University of Heidelberg,
Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany,
E-mail: gerhard.reinelt@informatik.uni-heidelberg.de



2 J. Balogh et al.

to be NP-hard [14]. Consequently, a large number of papers on polynomial time
algorithms with acceptable worst-case behaviour have been published. A particular
class is the so-called on-line algorithms, where the list L is scanned and each item
has to be packed immediately without having either information on the sizes of the
subsequent items or their number. In particular, an item assigned to a bin cannot
be repacked or moved as the algorithms packs later items. In contrast, off-line

algorithms have complete knowledge about the list of items and can thus apply
further strategies for packing. As an intermediate case, one can define semi-on-line

algorithms [8]. For example these algorithms allow one of the following operations
for each step or they have additional information about the input:

– repacking some finite number of already packed items [4,12,13,18,19],
– lookahead in the list before the current item is packed (i.e., some items are

known before they are packed) [15,16]),
– preprocessing (e.g., order w.r.t. sizes) some items [11], or
– knowledge of the optimum value before packing the list [1,9].

Here, and throughout the paper a step means the arrival and packing of the suc-
cessive item of the input list.

There are various methods available to measure the efficiency of bin-packing
algorithms. Here we restrict ourselves to the asymptotic competitive ratio. If A(L)
denotes the number of bins used by algorithm A and OPT (L) stands for the
number of bins used in an optimal packing, then the asymptotic competitive ratio

(ACR) of A is

R(A) := lim sup
k→∞

{
max
L

{
A(L)

k

∣∣∣ OPT (L) = k

}}
.

For off-line algorithms the first APTAS (Asymptotic Polynomial Time Approx-
imation Scheme) was developed in [10], where the authors demonstrate that for
any given ε > 0, there is an algorithm which solves the problem in linear time in
the length of the input list L (but exponential in 1/ε) with ACR 1 + ε.

Some on-line algorithms keep all bins open into which items have been placed,
while others allow only a restricted finite number of open bins for each step.
These are so-called bounded-space algorithms. Among bounded-space algorithms,
those of the harmonic fit type play an important role. The first such algorithm was
formulated by C.C. Lee and D.T. Lee in [20]. Their HARMONIC(M) algorithm is
based on a special nonuniform partition of the interval (0, 1] into i subintervals. A
single active bin is assigned to each of these subintervals and only items belonging
to this subinterval are packed into this corresponding bin. If some item do not fit
into an assigned bin, this bin is closed and a new bin is opened. (We say that a
bin is closed if we cannot pack items into it any more in the course of applying

the algorithm.) They proved that limM→∞R(HARMONIC(M)) = T∞ :=
∞∑
i=1

1
ki

=

1.69103 . . ., where k1 = 1, ki+1 = ki(ki + 1), i ≥ 1 is the Salzer series, which is
well–known in bin-packing [24]. On the negative side, Lee and Lee proved in [20]
that no on-line bounded-space bin-packing algorithm can have an ACR less than
the constant T∞.

The on-line algorithm with the best ACR so far was developed by Seiden and
has an ACR of 1.58889 [25]. This algorithm, called Harmonic++, belongs to the
class of Super Harmonic Algorithms, defined in [25]. Note that the earlier champion



On-line Bin Packing with Restricted Repacking 3

on-line algorithms (from 1985) [20,22,23] belong to this class as well. The best
known lower bound of 1.5403 for the ACR of on-line algorithms was presented in
[2], while the lower bound of any Super Harmonic type algorithm is 1.58333 [22].
It means that to beat the 1.58333 bound by an on-line algorithm, one needs to
change the technique used in the set-up of the current champion on-line algorithms
for the last 20 years. Another possibility is to allow for an algorithm slightly more
than the on-line rule (e.g. change to semi-on-line cases).

Chronologically, the first semi-on-line algorithm was given by Galambos [11] for
the bounded-space version of the classical bin-packing problem where only a fixed
number of bins are open while packing. This algorithm uses two ”buffer-bins” for
the temporary storing of items. The idea was further developed by Galambos and
Woeginger [12] for an algorithm that uses three buffer-bins and has an ACR of T∞.
In [12], it was proved that there is no bounded-space on-line bin-packing algorithm
that uses repacking and has an ACR better than T∞.

Semi-on-line algorithms with repacking were studied by Gambosi et al. [13].
They gave two algorithms: one with an ACR of 3

2 and time complexity O(n) and
a second one with ACR of 4

3 and running time of O(n log n). The latter algorithm
was improved by Ivkovič and Lloyd in [19] for an algorithm with an ACR of 5

4 .
This algorithm also works for the fully dynamic bin-packing case. In dynamic bin-
packing problems [6,7,17], items can also depart and the goal is to minimize the
maximum number of bins used at any time. In [19] the arrival of the elements
is considered as an Insert operation, while their departure is a Delete operation
on the input. Fully dynamic means that items may be moved (repacked) among
the bins as the packing is adjusted to accommodate arriving and departing items.
Ivkovič and Lloyd’s algorithm requires Θ(log n) time per operations (i.e., for Insert
and Delete of an item). Bundle of items is treated there as a whole, the number
of items (either individual items or bundles of them) that needs to be repacked is
bounded by a constant. It means that this semi-on-line algorithm does not repack
a constant number of items in the strict sense, because repacking of a bundle of
small items counts as one repacking. The models in [13,19] are different from the
model we are studying in this paper, because we allow to repack a constant number
of items per Insert operation in the strict sense (and of course, there is no Delete
operation on the input in our model).

In this article we deal with semi-on-line algorithms that allow repacking. We
will assume that repacking one item has a unit cost, independently of the size
of the item. This model is completely different than the ones mentioned in the
previous paragraph, because we assume that repacking of each element has the
same cost. In addition, we will assume that the maximum number of items to be
repacked for each step is bounded by a given constant k. We call such algorithms
k-repacking semi-on-line algorithms. The first lower bound for this class was given
by Ivkovič and Lloyd [18]. Their lower bound of 4

3 is valid for all k and also valid
for the fully dynamic bin packing problem. This general bound was improved in [3]
to 1.3871 . . . which is also valid for both cases: for the fully dynamic bin packing
problem and for any k-repacking semi-on-line bin packing problem for arbitrary k.

In this paper we improve the upper bounds given in the Hungarian language
paper of the authors [4], which gives a similar but less sophisticated algorithm that
in the present paper. The paper is organized as follows. In Section 2 we define our
algorithm HR-k and analyze its time complexity, showing that the running time
of the algorithm is O(kn). Then in the next section we describe its asymptotic



4 J. Balogh et al.

behaviour, demonstrating that the competitive ratio is slightly more than 3/2,
where the exact value depends on k, establishing a monotone decreasing series in
k. In the last section we briefly discuss the results obtained, then we suggest some
possible directions for future study.

2 The algorithm and its time complexity

We will begin by making some formal definitions and defining our notations used
here. First, let x denote an arbitrary item of the input list. Then we will refer to
its size just by x, if the context is clear. For an open bin B, we denote by level(B)
the sum of the sizes of items presently packed into B. Clearly, 0 < level(B) ≤ 1.
We call an item small if its size is in the interval (0, 12 ]; otherwise the item is large.
A bin B is a large bin if it contains a large item.

For each k ∈ N+ denote by bk the unique such solution of the equation 2kx2−
(6k + 3)x+ 1 = 0, which is in the interval (0, 1

6k ). (The precise way of getting the
bk values will be shown later.) We will write b instead of bk if k is fixed and it is
clear from the context.

Let k be an arbitrary nonnegative integer. The interval (0, 1] is divided into
2k + 3 disjoint subintervals Ij , j = 1, . . . , 2k + 3, in the following way

(0, bk] =: I1,(
bk,

1

2
− kbk

]
=: I2,(

1

2
− jbk,

1

2
− (j − 1)bk

]
=: Ik+3−j , j = 1, . . . , k,(

1

2
+ (j − 1)bk,

1

2
+ jbk

]
=: Ik+2+j , j = 1, . . . , k,(

1

2
+ kbk, 1

]
=: I2k+3.

It is easy to see that⋃
j=1,...,k

Ik+3−j =
⋃

j=1,...,k

(
1

2
− jbk,

1

2
− (j − 1)bk

]
=

(
1

2
− kbk,

1

2

]
,

⋃
j=1,...,k

Ik+2+j =
⋃

j=1,...,k

(
1

2
+ (j − 1)bk,

1

2
+ jbk

]
=

(
1

2
,
1

2
+ kbk

]
.

With each interval Ij we associate a class of bins denoted by Bj , j = 1, . . . , 2k+3.
A bin will be assigned to class Bj if the size of the smallest item which has been
put into it is in the interval Ij . Note that the classes of the bins may change during
the packing, the exact rules will be given later.

We call two classes Bj , 1 ≤ j ≤ k+ 2, and Bl, k+ 3 ≤ l ≤ 2k+ 3, complementary

classes if xj + xl ≤ 1 for all xj ∈ Ij and xl ∈ Il. The set of the complementary
classes w.r.t. a class Bi will be denoted by C(Bi), 1 ≤ i ≤ 2k+3. Note that C(Bk+2)
and C(B2k+3) are empty. Clearly, if l∗ denotes the largest index of the classes in



On-line Bin Packing with Restricted Repacking 5

C(Bj), 1 ≤ j ≤ k+ 1, then l∗ = min{2k+ 2, 2k+ 4− j}. Similarly, if Bj ∈ C(Bl) for
k + 3 ≤ l ≤ 2k + 2, then 1 ≤ j ≤ 2k + 4− l.

Basically, our algorithm HR-k (Harmonic Repacking) will pack the items using
the so-called harmonic fit rule (HF rule) [20]. Let x be the current item to be packed
and suppose that x ∈ Ij . If B is the last opened bin in class Bj and level(B)+x ≤ 1,
then we put x into B. Otherwise, we open a new bin of class Bj and put x into this
bin. When applying this HF rule, it is easy to see that in each class Bi, i ≤ k+2 or
i = 2k+ 3, all bins except for possibly the last one being filled up at least to level
1
2 +kbk. (In the case of i = 2k+3 it is trivial. In the remaining cases, if i > 2, then
each bin of a class — except for possibly the last opened one — contains at least
two items, and their total size is at least 1 − 2kbk, which with the choice of bk is
at least 1

2 + kbk. In the case of i ≤ 2 it can be readily seen that any bin of these
classes — except for possibly one — has been filled up to a level 1

2 + kbk.) So, if
the list does not contain items belonging to other intervals, then one can see with
little effort (observing that kbk never exceeds 1/6 and approaches this value for
large k) that an ACR of value 3

2 can be attained if k goes to infinity. In the rest of
the paper we will mostly focus on the other case (when the list contains item(s)
from the interval Ik+3∪ . . .∪ I2k+2), enhancing the HF rule in order to handle this
case.

Evidently, the HF rule only places one single item into bins of classes
Bk+3, . . . ,B2k+2. Our algorithm will improve this by filling up these bins with
possibly other items, if their sizes allow it. Furthermore, repacking is possible,
i.e., for each step the bin assignment can vary for a limited number of items.
Consequently, in our algorithm the number of currently used bins can change dy-
namically since we may open new bins and bins may become empty. To compute
A(L), we consider only those bins which are nonempty after the algorithm has
packed all of the items of the list.

Our algorithm also differs from the ”classical” harmonic fit algorithm in the
treatment of bins within the classes: we never close them, so their content will be
accessible during the whole execution of the algorithm (additional elements can
be packed into the bin or repacked from the bin into another one). Thus, it is not
a bounded-space algorithm.

We enhance the standard harmonic-fit rule based on the following two refinements.

– Rule 1 (Refill): If x is the current item to be packed and x ∈ Ij is a small
item with 1 ≤ j ≤ k + 1, then we examine the complementary classes of Bj in
increasing order of their indices. If we find a nonempty class Bl, then we put
the item into the last opened bin within the class. Let this bin be B. It is clear
that level(B) ∈ Il before we pack x into B. If level(B)+x /∈ Il then we reassign
B to the class Bt where level(B) + x ∈ It.
Clearly, if x /∈ I1, then after having packed it into a bin B this bin will always
change its class.
If all complementary classes are empty then we use the HF rule to pack this
small item, but we do not close the bins opened previously in its class.

– Rule 2 (Repack): If x is the current item to be packed and x ∈ Il is a large
item with k + 3 ≤ l ≤ 2k + 2, then we open a new bin in class Bl and put x
into this bin. Furthermore, we look for nonempty bins in the complementary
class Bj ∈ C(Bl) in decreasing order of their indices. If there exists such a bin,
then we repack one item from this bin into the last opened bin in the class Bl.



6 J. Balogh et al.

If the level of the large bin changes its interval (which will always happen if
j 6= 1), then we reassign it to the respective class.
(We need to take into account the fact that bins may become empty if their
last small item is repacked.)

It is worth noting that as a final step while packing an item (after applying
both rules), we try to carry out a further possible repacking if the bin in class Bl,
k + 3 ≤ l ≤ 2k + 2, has changed its class, and for the new Bt, t 6= 2k + 3. This
results in the call of Rule 2 (Repack) from both rules and it means that Repack
is a recursive procedure (because after the first call of Repack, it can be called
recursively by itself). In both cases it must be ensured that for each step at most
k number of items are repacked.

Algorithm HR-k

main program;
while there exist unpacked items do

input next x;
if x ∈ Il, k + 2 ≤ l ≤ 2k + 3, then

xHF → Bl;
if x /∈ Ik+2 and x /∈ I2k+3 then

call Repack(l, 2k + 3− l);
else if x ∈ Ij , 1 ≤ j ≤ k + 1, then

call Refill(x);

procedure Refill(x);
j := the index of the class for which x ∈ Ij ;
l∗ := min{2k + 4− j, 2k + 2}; (the largest index of the classes of complements of Bj)
do l = k + 3 to l∗

if Bl 6= ∅ then
x→ Bl; Let B be the bin into which x is packed.
if level(B) ∈ Ip, p 6= l, then

B → Bp;
if p < 2k + 3 then

call Repack(p, 2k + 4− p);
return; (either no change between classes or we have returned from Repack)

xHF → to the last opened bin of the class Bj ; (there was no complementary class in the
do-loop)

procedure Repack(l, j);
(We try to repack a small item from a bin of the class C(Bl) into the last bin of Bl,
l ≥ k + 3. Here j is the first index of the classes in C(Bl) where we need to start the
search.)
do t = j to 1

if Bt 6= ∅ then
x→ Bl, where x ∈ B,B ∈ Bt,; (B is the last opened bin of Bt and x is its
topmost item);
if level(B) ∈ Is, l + 1 ≤ s ≤ 2k + 3, then

B → Bs;
if s < 2k + 3 then

call Repack(s, t);

It should be mentioned that the above description of the two rules (and the
third rule which is the recursive call of Repack) is only a brief description of the



On-line Bin Packing with Restricted Repacking 7

algorithm. The precise description of the algorithm (parameter values passed to
procedures, etc.) is given below in the pseudocode listing. In the description we
use the notations xHF → Bt and x → Bt if we pack the actual item x using the
HF rule, or if we simply pack x into the last opened bin of the class Bt, respectively.
Similarly, we will use the notation B → Bt to mean the rearrangement of a bin
from its previous class to the class Bt.

The main program and the procedure Refill are self-explanatory. The param-
eter of Refill is the (size of the) item which we attempt to fit into a large bin.
For Repack, the most important thing is that this procedure can call itself recur-
sively. Its first parameter l is the index of the class of the large item that we try
to match from a complementary class. In the first call, the second parameter is
always 2k + 4− l, but in a series of recursive calls it is monotonically decreasing.

The next three statements are helpful for analyzing the time complexity of the
algorithm.

Lemma 1 Algorithm HR-k terminates in a finite time.

Proof The main loop will be executed exactly n times, namely once for each item
in L. The Refill procedure will be called at most once for each item of the list.

Although Repack may call itself recursively, this can only happen if the cur-
rently used bin changes its class and its level is at most 1

2 + kbk. It follows that
in the sequence of possible recursive calls the first parameters of Repack form a
strictly monotonically increasing sequence: in the first call we have l ≥ k + 3 and
for the last one l ≤ 2k+2. Therefore the number of recursive calls is at most k−1.
From this, we may conclude that the algorithm calls Repack at most k times for
each item of the list.

Since Repack is called either from the main loop or at most once for every each
of Refill, the statement follows. ut

Having demonstrated the truth of this lemma, the next statement follows imme-
diately.

Corollary 1 HR-k repacks at most k items for each step.

Lemma 2 The number of inspections of the contents of nonempty classes Bi is at

most (2k + 2)n.

Proof We will show that for each step the algorithm cannot test the emptiness of
more than 2k + 2 bin classes.

In the main program there is no such test, and in Refill there are at most k
comparisons for each item.

The procedure Repack has two parameters. The first one is l, where l = k+2+i,
for some 1 ≤ i ≤ k, and the second one is at most 2k + 4 − l = k + 2 − i. The
values of the second parameters of the recursive calls are monotonically, but not
strictly decreasing. (The second parameter j is an index of a bin-class of small
items, from which we attempt to repack a small item for each call of Repack. If
this bin-class is empty, then we continue the examination of the bin-classes of small
items in decreasing index-order.) Since for each item of a given list the procedure
Repack will be called at most k + 1 − i times, the algorithm performs at most
(k + 2− i) + (k + 1− i) = 2k + 3− 2i comparisons.



8 J. Balogh et al.

While packing the current item, if Repack is called for the first time from
Refill, it makes at most i−1 additional comparisons in that procedure. Otherwise,
if the first call of Repack is executed directly from the main loop, then there is no
additional comparison. ut

Combining these three statements yields

Theorem 1 The time complexity of HR-k is O(kn).

3 The asymptotic competitive ratio of HR-k

After having packed all of the items of a given list L, we see there are two distinct
cases:

Case A: All of the classes Bk+3, . . . ,B2k+2 are empty.
Case B: There is at least one nonempty class among Bk+3, . . . ,B2k+2.

Lemma 3 If all items of a given list L have been packed by HR-k and Case A holds,

then

HR-k (L) ≤ 2

1 + 2kbk
OPT (L) + (k + 2).

Proof In this case all opened bins have been packed at least to level 1
2 +kbk, except

for possibly the last opened bins of the classes B1, . . . ,Bk+2. The number of such
bins is at most k + 2. Therefore,

OPT (L) ≥
(

1

2
+ kbk

)
HR-k (L)− (k + 2)

and the statement follows. ut

For Case B we will apply the standard weight function technique. (In Lemma
3 we analyzed Case A without dealing explicitly with a weight function. However,
a weight function would obviously be defined in Case A as well, assigning a weight
w(x) = 1

1
2
+kbk

x to each item x(∈ (0, 1]). Then the weight of an item would depend

on whether Case A or Case B holds after the algorithm has finished the packing of
the input list.) Before we define the weight function for Case B, we need to state
a lemma.

Lemma 4 Suppose all items of a given list L have been packed by HR-k and at least

one of the classes Bk+3, . . . ,B2k+2 is nonempty (i.e., Case B holds). Let k + 2 + i∗

be the smallest index of such a nonempty class. Then all complementary classes of

Bk+2+i∗ , 1 ≤ i∗ ≤ k, are empty except for possibly B1.

Proof Since Bk+2+i∗ is not empty, it contains at least one nonempty bin B1 and
B1 is a large bin.

Suppose on the contrary that there exists a nonempty complementary class of
Bk+2+i∗ and it is not B1. Let j0 be the index of the largest nonempty class and
let B2 ∈ Bj0 be the last opened bin in this class. Then B2 contains at least one
small item. Let x be the top item in B2. There may be two different scenarios. In
the first case, the arrival of x ∈ L precedes the packing (or repacking) of y, where



On-line Bin Packing with Restricted Repacking 9

item y has been packed as the last item into B1. Since x preceded the packing
(or repacking) of y, HR-k will pack x (or another small item) into B1. Otherwise,
if the arrival of x was later than the packing (or repacking) of item y, then the
algorithm has packed x into B1 (or into another large bin) after it had placed y

into B1. Both cases lead to a contradiction. ut

Now we will define our weight function w(x). Let i∗ be defined as in Lemma 4.
In the following we will just write b instead of bk if k is fixed (and clear from the
context).
Then

w(x) :=



x
1−b , x ∈ {I1 ∪ I2 ∪ . . . ∪ Ik+2−i∗},

1
2 , x ∈ {Ik+3−i∗ ∪ . . . ∪ Ik+2},

1− 1
1−b (1

2 + (i∗ − 1)b− x), x ∈ {Ik+3 ∪ . . . ∪ Ik+1+i∗}(= ∅, if i∗ = 1),

1, x ∈ {Ik+2+i∗ ∪ . . . ∪ I2k+3}.

Note that in the case of i∗ = 1 the weight of any large item is 1. If some
items have arrived from the intervals I2, I3, . . . , Ik+2−i∗ , then they must have been
packed in a large bin, because the B2,B3, . . . ,Bk+2−i∗ bin classes are empty (see
Lemma 4).

In the case i∗ > 1 the classes Bk+2+j , j = 1 . . . , i∗ − 1 are empty at the end.
That is, if some items have arrived from these intervals after finishing the packing
they must be in bins of classes for which the index of the class is at least k+2+ i∗.
For such a large item we assign a weight w, which is less than 1. To guarantee that
the weight of such a bin is at least 1, for the small items of this bin we assign a
weight in such a way that the total weight of the small elements contained by the
bin is at least 1− w. It ensures that the weight of these bins is at least 1 as well.
In the proof of the next lemma we will show this, and that in Case B the weight
of each bin is at least 1, except for at most one bin of the class B1 and one bin of
each of the classes Bk+3−i∗ , . . . ,Bk+2.

Lemma 5 If Case B holds and k + 2 + i∗ is the smallest index for which Bk+2+i∗

contains at least one nonempty bin, then for any list L

w(L) =
∑
x∈L

w(x) ≥ HR-k(L)− (k + 1).

Proof We will show that for each class, except for at most one bin in each class,
the sum of the weights of the items in a bin is at least 1.

– If B ∈ B1 and it is not the last opened non-empty bin, then level(B) > 1− b. If
x ∈ B then w(x) = 1

1−bx. Therefore w(B) =
∑

x∈B w(x) > 1.
– The class Bi is empty, where 2 ≤ i ≤ k + 2− i∗ (see Lemma 4).
– If B ∈ Bj , k + 3− i∗ ≤ j ≤ k + 2, and it is not the last opened non-empty bin

in its class, then it contains exactly two items x and y with w(x) = w(y) = 1
2 .

– If B ∈ {Bk+2+i∗ , . . . ,B2k+3}, then level(B) > 1
2 + (i∗−1)b and the bin contains

one large item x. Here, there are two distinct cases.
– If x > 1

2 + (i∗ − 1)b, then w(x) = 1, so in this case w(B) ≥ 1.



10 J. Balogh et al.

– If x ∈
(
1
2 ,

1
2 + (i∗ − 1)b

]
, then w(x) = 1− 1

1−b (1
2 + (i∗− 1)b− x) and the bin

contains small items with cumulative size level(B)− x ≥ 1
2 + (i∗ − 1)b− x.

The weight of these small items (from the definition of weight function) is
at least 1

1−b
(
1
2 + (i∗ − 1)b− x

)
. Thus w(B) ≥ 1 in the second case as well.

Noting that the number of ”exceptional” bins is at most 1 in the non-empty
bin classes and a bin containing a large item cannot be an exception, the total
number of exception bins is at most k + 1, hence the lemma is true. ut

Lemma 6 If Case B holds and S is a subset of the items from L with
∑

x∈S x ≤ 1,

then

w(S) =
∑
x∈S

w(x) ≤ 3

2
+

b

1− b .

Proof If S contains only small items, then w(x) ≤ 3
2 x for x ∈ S by definition of w.

Therefore

w(S) =
∑
x∈S

w(x) <
∑
x∈S

3

2
x ≤ 3

2
.

If S contains a large item x1, for which x1 >
1
2 + kb holds, then w(x1) = 1 and∑

x∈S,x 6=x1
x ≤ 1− x1 = 1

2 − kb. But if x < 1
2 − kb, then w(x) ≤ 1

1−bx, so

w(S) :=
∑
x∈S

w(x) ≤ 1 +
∑

x∈S,x 6=x1

1

1− bx

≤ 1 +
1

1− b

(
1

2
− kb

)
= 1 +

1

1− b

(
1

2
− 1

2
b+

1

2
b− kb

)
=

3

2
−

(k − 1
2 )b

1− b ≤ 3

2
− b

2(1− b)
<

3

2
.

If x1 ∈ S and 1
2 < x1 ≤ 1

2 + kb then x1 is the largest item in S. With the
assumption that Case B holds, there exists a positive integer i, 1 ≤ i ≤ k, such
that x1 ∈ Ik+2+i.

There are two cases that need to be examined:

a) If x1 >
1
2 + (i∗ − 1)b, then i ≥ i∗. If x2 is the second largest item in S, then we

have two subcases:
– if x2 ∈ {I1 ∪ . . . ∪ Ik+2−i} then for each item x (x 6= x1), x ≤ x2, so x ∈
{I1 ∪ . . . ∪ Ik+2−i} holds as well. As regards the weight of a small item like x,
w(x) ≤ 1

1−bx is valid, so

w(S) =
∑
x∈S

w(x) = w(x1) +
∑

x∈S,x 6=x1

w(x)

≤ 1 +
1

1− b ·
1

2
= 1 +

1

2− 2b
=

3− 2b

2− 2b
=

3

2
+

b

2(1− b)
.

– if x2 ∈ {Ik+3−i∪ . . .∪Ik+2}, then x2 ∈ Ik+3−i, because otherwise x1 +x2 > 1.
But in this case

∑
x∈S,x 6=x1,x 6=x2

x ≤ 1−x1−x2 ≤ 1−(1
2 +(i−1)b)−(1

2−ib) = b.
It means that x ∈ I1. Hence

w(S) =
∑
x∈S

w(x) = w(x1) + w(x2) +
∑

x∈S,x 6=x1,x 6=x2

w(x) ≤ 1 +
1

2
+

b

1− b

=
3

2
+

b

1− b .



On-line Bin Packing with Restricted Repacking 11

b) if x1 ≤ 1
2 + (i∗ − 1)b, then x1 ∈ Ik+2+i, when 1 ≤ i < i∗. If x2 is the second

largest item in S, then we also have two subcases:
– If x2 > 1

2 − i∗b, then w(x2) = 1
2 , and

∑
x∈S,x 6=x1,x 6=x2

x ≤ 1 − x1 − x2 <

1− x1 − (1
2 − i

∗b) = 1
2 + i∗b− x1.

From this

w(S) =
∑
x∈S

w(x) = w(x1) + w(x2) +
∑

x∈S,x 6=x1,x 6=x2

w(x)

≤ 1− 1

1− b ·
(

1

2
+ (i∗ − 1)b− x1

)
+

1

2
+

1

1− b

(
1

2
+ i∗b− x1

)
=

3

2
+

b

1− b .

– If x1 ≤ 1
2 + (i∗ − 1)b and x2 ≤ 1

2 − i∗b, then for all x 6= x1 items of S
w(x) ≤ 1

1−bx holds. As before (case a, first subcase), it can be shown that

w(S) ≤ 3
2 + b

2(1−b) also applies in this case.

This completes the proof of the lemma. ut

If we compare lemmas 3 and 6, we see that in both cases for given k ∈ N+ we
can fix a real number b which satisfies the desired condition kb < 1

6 . But then we
will get different upper bounds for HR-k. The two multiplicative constants will be
equal if the equation

2

1 + 2kbk
=

3

2
+

bk
1− bk

has a solution for each fixed k satisfying the condition kbk < 1
6 . One can easily

check that the equation 2kb2k − (6k + 3)bk + 1 = 0 has such a solution, and only
one solution of this type. That is,

bk =
6k + 3−

√(
6k + 7

3

)2
+ 32

9

4k
.

We list some values for the respective pairs k and bk in Table 1.
Let M1 = k + 2 from Lemma 3, and M2 = k + 1 from Lemma 5, and let

M := max{M1,M2} = k + 2. Combining the results of lemma 3, 5, and 6 we get

HR-k(L) ≤ max

{
2

1 + 2kbk
,
3

2
+

bk
1− bk

}
OPT (L) +M.

Now, we can state an upper bound on the asymptotic competitive ratio of our algo-
rithm for any k value and state the limes of these ratios, taking into consideration
the fact that bk ∈

(
0, 1

6k

)
, for any k value.

Theorem 2 For any fixed k ∈ N+

R(HR-k) ≤ 3

2
+

bk
1− bk

,

and R(HR-k)→ 3
2 for k →∞.



12 J. Balogh et al.

The next theorem provides a lower bound. Though this bound does not quite
match the upper bound, the results are fairly close (this will be discussed later
on).

Theorem 3 For any fixed k ∈ N+

R(HR-k) ≥
(

1− b2k
(1− bk)2

)(
3

2
+

bk
1− bk

)
.

Proof For each t, t ∈ N+, let n = 2t(b 1
bk
c− 1). For each given n we construct a list

L with N = 4n+ 8t− 3 items as a concatenation of four sublists, L = L1L2L3L4,
as follows.

(i) L1 = (L11L12L13)2t (the exponent gives the number of repetitions of the con-
catenated sublists) where
– L11 contains b 1

bk
c − 1 items, each with size bk − 2ε,

– L12 contains one item with size 1− bk
(
n
2t + 1

)
+ n

t ε,
– L13 contains three items with sizes ε, where

ε < min

{
bk
n
,

1

6t+ n− 3
,
2bkt+ nbk

2 − t
n

}
.

(ii) L2 contains n− 3 items of size ε.
(iii) L3 contains n items of size 1

2 − bk + ε.
(iv) L4 contains of n items of size 1

2 + ε.

HR-k packs the items of this list in the following way. First, it packs the items
of the first list L11L12L13 using the pure HF rule into bins of class B1. The levels of
each of these bins will be exactly 1−bk+3ε, so the first item of the next L11L12L13

must be put into a newly opened bin. Therefore the algorithm uses

2t =
n

b1−bkbk
c

bins to pack the items of L1.

The items from L2 belong to I1, so they will also use bins from B1. Since the
last opened bin in class B1 is filled to level 1− bk + 3ε, the elements of L2 can be
put into this bin.

The items of L3 are packed pairwise into bins belonging to the class Bk+2.
Lastly, when processing the items from L4, the algorithm opens a new bin of

class Bk+3 for each item of L4, and for each step it repacks one item with size ε
from the last opened bin of B1.
Summarizing, HR-k uses

HR-k (L) = n+
n

2
+

n

b1−bkbk
c
≤ n

(
3

2
+

bk
1− bk

)
bins. But, since the sum of the sizes of the items is at most

n+ 2t
(

1− bk −
n

2t
(bk − 2ε)

)
+ 1 ≤ n+ 2tbk + 1,

we get

OPT (L) ≤ n+
nbk

b 1
bk
c − 1

+1 ≤ n+
nbk
1
bk
− 2

+1 ≤ n
(

1 +
b2k

1− 2bk

)
+1 = n

(1− bk)2

1− 2bk
+1.



On-line Bin Packing with Restricted Repacking 13

Table 1 Values of bk and the bounds for different values of k.

k bk LB UB ∆

1 0.113999 1.601704 1.628667 0.026963
2 0.067895 1.564496 1.572842 0.008346
3 0.048285 1.546743 1.550735 0.003992
4 0.037452 1.536580 1.538910 0.002330
5 0.030586 1.530026 1.531552 0.001526
6 0.025846 1.525457 1.526532 0.001075
7 0.022378 1.522092 1.522890 0.000798
8 0.019729 1.519511 1.520127 0.000616
9 0.017642 1.517469 1.517959 0.000490

10 0.015953 1.515813 1.516212 0.000399
11 0.014560 1.514444 1.514775 0.000331
12 0.013390 1.513293 1.513572 0.000279
17 0.009553 1.509505 1.509646 0.000141
34 0.004838 1.504826 1.504862 0.000036
42 0.003926 1.503918 1.503942 0.000024
56 0.002952 1.502948 1.502961 0.000013
84 0.001973 1.501971 1.501978 0.000007

167 0.000995 1.500994 1.500996 0.000002

Therefore

R(HR-k) = limn→∞
n
(

3
2 + bk

1−bk

)
n (1−bk)2

1−2bk
+ 1

= limn→∞

3
2 + bk

1−bk
(1−bk)2
1−2bk

+ 1
n

=

(
3

2
+

bk
1− bk

)(
1− 2bk

(1− bk)2

)
,

which proves the theorem. ut

One consequence of the above two theorems is

Corollary 2 For any fixed k ∈ N+(
3

2
+

bk
1− bk

)(
1− 2bk

(1− bk)2

)
≤ R(HR-k) ≤ 3

2
+

bk
1− bk

.

Table 1 shows lower and upper bounds for the most interesting values of k,
namely for k = 1, . . . , 12 and for those k values where the corresponding up-
per bound falls below the values 1.51, 1.505, 1.504, 1.503, 1.502 and 1.501
(k = 17, 34, 42, 56, 84, 167) for the first time.

4 Conclusions, future work and open questions

In this article we examined a family of semi-on-line algorithms for the classical
one-dimensional bin-packing problem. These algorithms allow the repacking of at
most a fixed number of items in each step. It is clear that this type of algorithm is
worthwhile if the performance is better than that of standard on-line algorithms.
Even though our algorithms are semi-on-line, we compare their results to the cor-
responding on-line case. With increasing values of k, the asymptotic competitive



14 J. Balogh et al.

ratio of our algorithms quickly converges to 1.5 and our method gives better re-
sults than the classical on-line algorithms already for small k. Especially there
are two interesting cases. R(HR-2) = 1.5728 . . . is better than the asymptotic ra-
tio 1.58889 . . . of the best known on-line algorithm [25]. R(HR-4) = 1.5389 . . . is
smaller than the best known lower bound 1.5403 . . . for on-line algorithms pub-
lished in [2]. These results tell us that our algorithm is capable of exploiting the
additional flexibility obtained from the chance of repacking items.

Although the algorithms described in the papers [13] and [19] have an ACR
that is less than or equal to 1.5, we should point out again that we used a repacking
definition that is different from theirs. Namely, in [13] and [19] a grouping operation
is allowed where a set of small items can be created, and the repacking of a set
of small items counts as 1-repacking (even the number of small items in a set is
O(log n)). Hence, there is no direct connection between the two types of algorithms
from this point of view. Our algorithms do not use the grouping operation (because
it is not allowed) and in our terminology the repacking of every single item is
counted as 1-repacking in a step. Furthermore, we allow only a fixed number of
repacking per step.

Another remark is that in the cost of our algorithms we counted only the
number of non-empty bins when packing the whole list. We did this because it
may happen that bins become empty as a consequence of repacking. Otherwise,
the cost would be totally different in our algorithms. This way our algorithms
work well for the Salzer series [24]. For the list L that is used for the proof of the
lower bound 1.5 [26], it can be readily verified that any HR-k uses fewer than 7

6n

bins (if ε < 1
6 − b1). In this construction, L is the concatenation of n elements of

1
6 − 2ε, n elements of 1

3 + ε and n elements of 1
2 + ε. If we take emptied bins into

consideration, then we would have 5
3n bins. Similar results can be obtained for the

lists used in [5] and [21]. It is an interesting question of whether T∞ is an upper
bound for every HR-k algorithm if emptied bins are counted.

There are other open questions for further study. One is that although the gap
between the upper and lower bounds is already very small for k = 1, one would
like to know if it can still be improved. Another is that a semi-on-line algorithm
that may repack only one item in each step can have an asymptotic ratio better
than 1.58889 or even 1.58333. These are the best known upper bounds on the ACR
of the current best on-line algorithm and the lower bound of any Super Harmonic
type on-line algorithm [25,22], respectively. For k < 4, it would be interesting to
know whether an ACR better than 1.5403 . . . can be achieved. Unfortunately, our
algorithm does not improve the upper bound of the best known online algorithm
of Seiden [25] for k = 1. But in this case our algorithm with a simple interval
structure uses only 6 bin classes, while the very sophisticated Harmonic++ of [25]
uses a complicated interval structure with 76 subclasses. Furthermore, we strongly
conjecture that the upper bound in the case of k = 1 can be improved to 1.59 by
using repacking and about 15 bin classes. These are far fewer bin classes than the
76 used in [25]. This study is in progress.

It is also interesting to note that a lower bound is given for a class of pure
on-line bin packing algorithms in [22]. These algorithms use h + 1 (h = 1, 2, . . .)
interval partitions of the (1/2, 1] and of the (1/3, 1/2] intervals. For the cases k ≥ 2,
the upper bound of our HR-k algorithm is below the lower bound stated in [22].
In the case of h = 1, the lower bound of [22] is 1.6111 . . ., which can also be
achieved by the above-mentioned modification of our HR− 1 algorithm, based on



On-line Bin Packing with Restricted Repacking 15

the modification of its interval structure and analyzing both cases of the proof
using a weight function.

Acknowledgement

The authors are grateful to the reviewers’ valuable comments, that improved the
manuscript.

References

1. J. Balogh and J. Békési, Semi-on-line Bin Packing: A Short Overview and a New Lower
Bound, submitted for publication, 2012.

2. J. Balogh, J. Békési, and G. Galambos, New Lower Bounds for Certain Classes of Bin
Packing Algorithms, Proceedings of WAOA 2010 (8th Workshop on Approximation and
Online Algorithms), LNCS 6534, pp. 25–36, 2011.

3. J. Balogh, J. Békési, G. Galambos, and G. Reinelt, Lower Bound for the Online Bin Packing
Problem with Restricted Repacking, SIAM J. Computing 38, 398–410, 2008.

4. J. Balogh and G. Galambos, Algorithms for the on-line bin packing problem with repacking,
Alkalmazott Matematikai Lapok, 24, 117–130, 2007. (in Hungarian)

5. D.J. Brown, A lower bound for on-line one-dimensional bin packing algorithms, Tech. Rept.
R-864, Coordinated Science Laboratory, University of Illinois, Urbana, IL, 1979.

6. J.W-T. Chan, T-W. Lam, P.W.H. Wong, Dynamic bin packing of unit fractions items,
Theoretical Computer Science 409, 521–529, 2008.

7. Coffmann, E.G., M.R. Garey, and D.S. Johnson, Dynamic bin packing, SIAM Journal on
Computing 12(2), 227–260, 1983.

8. E.G. Coffman, G. Galambos, S. Martello, and D. Vigo, Bin Packing Approximation Algo-
rithms: Combinatorial Analysis. In: Handbook of Combinatorial Optimization (Eds. D.-Z.
Du and P.M. Pardalos), pages 151–208. Kluwer Academic Publishers, 1999.

9. L. Epstein and A. Levin, On bin packing with conflicts, SIAM Journal on Optimization,
19:1270–1298, 2008.

10. W. Fernandez de la Vega, and G.S. Lueker, Bin Packing can be Solved Within 1 + ε in
Linear Time, Combinatorica 1, 349–355, 1981.

11. G. Galambos, A New Heuristic for the Classical Bin Packing Problem, Technical Report 82,
Institut für Mathematik, Universität Augsburg, 1985.

12. G. Galambos and G.J. Woeginger, Repacking Helps in Bounded Space On-line Bin Pack-
ing, Computing 49, 329–338, 1993.

13. G. Gambosi, A. Postiglione, and M. Talamo, Algorithms for the Relaxed Online Bin-
Packing Model, SIAM J. Computing 30, 1532–1551, 2000.

14. M.R. Garey and D.S. Johnson, Computers and Intractability (A Guide to the theory of
NP-Completeness). W.H. Freeman and Company, 1979.

15. E.F. Grove, Online Bin Packing with Lookahead, SODA 1995: 430–436.
16. G. Gutin, T. Jensen, and A. Yeo, Batched Bin Packing, Discrete Optimization 2, 71–82,

2005.
17. X. Han, C. Peng, D. Ye, D. Zhang, and Y. Lan, Dynamic bin packing with unit fraction

items revisited, Information Processing Letters 110(23), 1049–1054, 2010.
18. Z. Ivkovič and E.L. Lloyd, A Fundamental Restriction on Fully Dynamic Maintenance of

Bin Packing, Information Processing Letters 59, 229–232, 1996.
19. Z. Ivkovič and E.L. Lloyd, Fully Dynamic Algorithms for Bin Packing: Being (Mostly)

Myopic Helps, SIAM J. Computing 28, 574–611, 1998.
20. C.C. Lee and D.T. Lee, A Simple On-line Bin Packing Algorithm, J. of the ACM 32,

562–572, 1985.
21. F.M. Liang, A lower bound for on-line bin-packing, Information Processing Letters 10,

76–79, 1980.
22. P. Ramanan, D.J. Brown, C.C. Lee, and D.T. Lee, On-line Bin Packing in Linear Time,

J. of Algorithms 10, 305–326, 1989.
23. M.B. Richey, Improved bounds for harmonic-based bin packing algorithms, Discrete Ap-

plied Mathematics 34, 203–227, 1991.



16 J. Balogh et al.

24. H.E. Salzer, The approximation of numbers as sums of reciprocals, Am. Math. Monthly
54, 135–142, 1947.

25. S.S. Seiden, On the Online Bin Packing Problem, J. of the ACM 49, 640–671, 2002.
26. A.C. Yao, New algorithms for bin packing, J. of the ACM 27, 207–227, 1980.


