17 research outputs found

    Prenatal smoke effect on mouse offspring Igf1 promoter methylation from fetal stage to adulthood is organ- and sex-specific

    Get PDF
    Prenatal smoke exposure (PSE) is associated with reduced birth weight, impaired fetal development, and increased risk for diseases later in life. Changes in DNA methylation may be involved, as multiple large-scale epigenome-wide association studies showed that PSE is robustly associated with DNA methylation changes in blood among offspring in early life. Insulin-like growth factor-1 (IGF1) is important in growth, differentiation, and repair processes after injury. However, no studies investigated the organ-specific persistence of PSE-induced methylation change of Igf1 into adulthood. Based on our previous studies on the PSE effect on Igf1 promoter methylation in fetal and neonatal mouse offspring, we now have extended our studies to adulthood. Our data show that basal Igf1 promoter methylation generally increased in the lung but decreased in the liver (except for 2 persistent CpG sites in both organs) across three different developmental stages. PSE changed Igf1 promoter methylation in all three developmental stages, which was organ and sex specific. The PSE effect was less pronounced in adult offspring compared with the fetal and neonatal stages. In addition, the PSE effect in the adult stage was more pronounced in the lung compared with the liver. For most CpG sites, an inverse correlation was found for promoter methylation and mRNA expression when the data of all three stages were combined. This was more prominent in the liver. Our findings provide additional evidence for sex- and organ-dependent prenatal programming, which supports the developmental origins of health and disease (DOHaD) hypothesis

    Prenatal smoke exposure induces persistent Cyp2a5 methylation and increases nicotine metabolism in the liver of neonatal and adult male offspring

    Get PDF
    Prenatal smoke exposure (PSE) is a risk factor for nicotine dependence. One susceptibility gene for nicotine dependence is Cytochrome P450 (CYP) 2A6, an enzyme responsible for the conversion of nicotine to cotinine and nicotine clearance in the liver. Higher activity of the CYP2A6 enzyme is associated with nicotine dependence, but no research has addressed the PSE effects on the CYP2A6 gene or its mouse homologue Cyp2a5. We hypothesized that PSE affects Cyp2a5 promoter methylation, Cyp2a5 mRNA levels, and nicotine metabolism in offspring. We used a smoke-exposed pregnant mouse model. RNA, DNA, and microsomal protein were isolated from liver tissue of foetal, neonatal, and adult offspring. Enzyme activity, Cyp2a5 mRNA levels, and Cyp2a5 methylation status of six CpG sites within the promoter region were analysed via HPLC, RT-PCR, and bisulphite pyrosequencing. Our data show that PSE induced higher cotinine levels in livers of male neonatal and adult offspring compared to controls. PSE-induced cotinine levels in neonates correlated with Cyp2a5 mRNA expression and promoter methylation at CpG-7 and CpG+45. PSE increased methylation in almost all CpG sites in foetal offspring, and this effect persisted at CpG-74 in male neonatal and adult offspring. Our results indicate that male offspring of mothers which were exposed to cigarette smoke during pregnancy have a higher hepatic nicotine metabolism, which could be regulated by DNA methylation. Given the detected persistence into adulthood, extrapolation to the human situation suggests that sons born from smoking mothers could be more susceptible to nicotine dependence later in life

    Postnatal Smoke Exposure Further Increases the Hepatic Nicotine Metabolism in Prenatally Smoke Exposed Male Offspring and Is Linked with Aberrant Cyp2a5 Methylation

    Get PDF
    Prenatal smoke exposure (PreSE) is a risk factor for nicotine dependence, which is further enhanced by postnatal smoke exposure (PostSE). One susceptibility gene to nicotine dependence is Cytochrome P450 (CYP) 2A6, an enzyme responsible for the conversion of nicotine to cotinine in the liver. Higher CYP2A6 activity is associated with nicotine dependence and could be regulated through DNA methylation. In this study we investigated whether PostSE further impaired PreSE-induced effects on nicotine metabolism, along with Cyp2a5, orthologue of CYP2A6, mRNA expression and DNA methylation. Using a mouse model where prenatally smoke-exposed adult offspring were exposed to cigarette smoke for 3 months, enzyme activity, mRNA levels, and promoter methylation of hepatic Cyp2a5 were evaluated. We found that in male offspring, PostSE increased PreSE-induced cotinine levels and Cyp2a5 mRNA expression. In addition, both PostSE and PreSE changed Cyp2a5 DNA methylation in male groups. PreSE however decreased cotinine levels whereas it had no effect on Cyp2a5 mRNA expression or methylation. These adverse outcomes of PreSE and PostSE were most prominent in males. When considered in the context of the human health aspects, the combined effect of prenatal and adolescent smoke exposure could lead to an accelerated risk for nicotine dependence later in life.</p

    Mouse Protocadherin-1 gene expression is regulated by cigarette smoke exposure in vivo

    Get PDF
    Protocadherin-1 (PCDH1) is a novel susceptibility gene for airway hyperresponsiveness, first identified in families exposed to cigarette smoke and is expressed in bronchial epithelial cells. Here, we asked how mouse Pcdh1 expression is regulated in lung structural cells in vivo under physiological conditions, and in both short-term cigarette smoke exposure models characterized by airway inflammation and hyperresponsiveness and chronic cigarette smoke exposure models. Pcdh1 gene-structure was investigated by Rapid Amplification of cDNA Ends. Pcdh1 mRNA and protein expression was investigated by qRT-PCR, western blotting using isoform-specific antibodies. We observed 87% conservation of the Pcdh1 nucleotide sequence, and 96% conservation of the Pcdh1 protein sequence between men and mice. We identified a novel Pcdh1 isoform encoding only the intracellular signalling motifs. Cigarette smoke exposure for 4 consecutive days markedly reduced Pcdh1 mRNA expression in lung tissue (3 to 4-fold), while neutrophilia and airway hyperresponsiveness was induced. Moreover, Pcdh1 mRNA expression in lung tissue was reduced already 6 hours after an acute cigarette-smoke exposure in mice. Chronic exposure to cigarette smoke induced loss of Pcdh1 protein in lung tissue after 2 months, while Pcdh1 protein levels were no longer reduced after 9 months of cigarette smoke exposure. We conclude that Pcdh1 is highly homologous to human PCDH1, encodes two transmembrane proteins and one intracellular protein, and is regulated by cigarette smoke exposure in vivo

    Prenatal exposure to tobacco smoke sex dependently influences methylation and mRNA levels of the Igf axis in lungs of mouse offspring

    Get PDF
    BACKGROUND: Prenatal smoke exposure is a risk factor for abnormal lung development and increased sex-dependent susceptibility for asthma and COPD. Birth cohort studies show genome wide DNA methylation changes in children from smoking mothers, but evidence for sex-dependent smoke-induced effects is limited. The insulin-like growth factor (IGF) system plays an important role in lung development. We hypothesized that prenatal exposure to smoke induces lasting changes in promoter methylation patterns of Igf1 and Igf1r, thus influencing transcriptional activity, and contributing to abnormal lung development. METHOD: We measured and compared mRNA levels along with promoter methylation of Igf1 and Igf1r and their protein concentrations in lung tissue of 30-day-old mice which had been prenatally exposed to cigarette smoke (PSE) or filtered air (control). Body weight at 30 days after birth was measured as global indicator of normal development. RESULTS: Female PSE mice showed lower mRNA levels of Igf1 and its receptor (Igf1: p = 0.05; Igf1r: p = 0.03). Furthermore, CpG site specific methylation changes were detected in Igf1r in a sex-dependent manner and the body weight of female offspring was reduced after prenatal exposure to smoke, while protein concentrations were unaffected. CONCLUSION: Prenatal exposure to smoke induces a CpG-site specific loss of Igf1r promoter methylation, which can be associated with body weight. These findings highlight the sex-dependent and potentially detrimental effects of in utero smoke exposure on DNA methylation and Igf1 and Igf1r mRNA levels. The observations support a role for Igf1 and Igf1r in abnormal development

    Targeted epigenetic silencing of UCHL1 expression suppresses collagen-1 production in human lung epithelial cells

    Get PDF
    Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) is highly expressed in smokers, but little is known about the molecular mechanism of UCHL1 in airway epithelium and its possible role in affecting extracellular matrix (ECM) remodelling in the underlying submucosa. Since cigarette smoking is a major cause of lung diseases, we studied its effect on UCHL1 expression and DNA methylation patterns in human bronchial epithelial cells, obtained after laser capture micro-dissection (LCM) or isolated from residual tracheal/main stem bronchial tissue. Targeted regulation of UCHL1 expression via CRISPR/dCas9 based-epigenetic editing was used to explore the function of UCHL1 in lung epithelium. Our results show that cigarette smoke extract (CSE) stimulated the expression of UCHL1 in vitro. The methylation status of the UCHL1 gene was negatively associated with UCHL1 transcription in LCM-obtained airway epithelium at specific sites. Treatment with a UCHL1 inhibitor showed that the TGF-β1-induced upregulation of the ECM gene COL1A1 can be prevented by the inhibition of UCHL1 activity in cell lines. Furthermore, upon downregulation of UCHL1 by epigenetic editing using CRISPR/dCas-EZH2, mRNA expression of COL1A1 and fibronectin was reduced. In conclusion, we confirmed higher UCHL1 expression in current smokers compared to non- and ex-smokers, and induced downregulation of UCHL1 by epigenetic editing. The subsequent repression of genes encoding ECM proteins suggest a role for UCHL1 as a therapeutic target in fibrosis-related disease

    Prenatal smoke exposure dysregulates lung epithelial cell differentiation in mouse offspring - Role for AREG-induced EGFR signaling

    Get PDF
    Prenatal smoke exposure is a risk factor for impaired lung development in children. Recent studies have indicated that amphiregulin (AREG), which is a ligand of the epidermal growth factor receptor (EGFR), has a regulatory role in airway epithelial cell differentiation. In this study, we investigated the effect of prenatal smoke exposure on lung epithelial cell differentiation and linked this with AREG-EGFR signaling in 1-day-old mouse offspring. Bronchial and alveolar epithelial cell differentiations were assessed by immunohistochemistry. Areg, epidermal growth factor (Egf), and mRNA expressions of specific markers for bronchial and alveolar epithelial cells were assessed by RT-qPCR. The results in neonatal lungs were validated in an AREG-treated three-dimensional mouse lung organoid model. We found that prenatal smoke exposure reduced the number of ciliated cells and the expression of the cilia-related transcription factor Foxj1, whereas it resulted in higher expression of mucus-related transcription factors Spdef and Foxm1 in the lung. Moreover, prenatally smoke-exposed offspring had higher numbers of alveolar epithelial type II cells (AECII) and lower expression of the AECI-related Pdpn and Gramd2 markers. This was accompanied by higher expression of Areg and lower expression of Egf in prenatally smoke-exposed offspring. In bronchial organoids, AREG treatment resulted in fewer ciliated cells and more basal cells when compared with non-treated bronchiolar organoids. In alveolar organoids, AREG treatment led to more AECII cells than non-treated AECII cells. Taken together, the observed impaired bronchial and alveolar cell development in prenatally smoke-exposed neonatal offspring may be induced by increased AREG-EGFR signaling

    IL-17 expression in the submucosa of bronchial biopsies of 4 groups of studied population.

    No full text
    <p>atopic inhaled corticosteroid (ICS) user (frame A), nonatopic ICS user (frame B), atopic non-ICS user (frame C), nonatopic non-ICS user (frame D). Single staining for IL-17 (frame E; blue) and MPO (frame F; red) and double staining for IL-17 and MPO (frame G; purple) in adjacent sections of a nonatopic non-ICS user asthmatic patient. Single staining for IL-17 (frame H; blue) and EPX (frame I; red) and double staining for IL-17 and EPX (frame J; purple) in adjacent sections of an atopic non-ICS user asthmatic patient.</p
    corecore