1,731 research outputs found
Towards Modular Compilation Using Higher-Order Effects
Compilers transform a human readable source language into machine readable target language. Nanopass compilers simplify this approach by breaking up this transformation into small steps that are more understandable, maintainable, and extensible. We propose a semantics-driven variant of the nanopass compiler architecture exploring the use a effects and handlers to model the intermediate languages and the transformation passes, respectively. Our approach is fully typed and ensures that all cases in the compiler are covered. Additionally, by using an effect system we abstract over the control flow of the intermediate language making the compiler even more flexible. We apply this approach to a minimal compiler from a language with arithmetic and let-bound variables to a string of pretty printed X86 instructions. In the future, we hope to extend this work to compile a larger and more complicated language and we envision a formal verification framework from compilers written in this style
Predictive Ability of QCD Sum Rules for Excited Baryons
The masses of octet baryons are calculated by the method of QCD sum rules.
Using generalized interpolating fields, three independent sets of QCD sum rules
are derived which allow the extraction of low-lying N* states with spin-parity
1/2+, 1/2- and 3/2- in both the non-strange and strange channels. The
predictive ability of the sum rules is examined by a Monte-Carlo based analysis
procedure in which the three phenomenological parameters (mass, coupling,
threshold) are treated as free parameters simultaneously. Realistic
uncertainties in these parameters are obtained by simultaneously exploring all
uncertainties in the QCD input parameters. Those sum rules with good predictive
power are identified and their predictions are compared with experiment where
available.Comment: 33 pages, 2 figure
Blocked All-Pairs Shortest Paths Algorithm on Intel Xeon Phi KNL Processor: A Case Study
Manycores are consolidating in HPC community as a way of improving
performance while keeping power efficiency. Knights Landing is the recently
released second generation of Intel Xeon Phi architecture. While optimizing
applications on CPUs, GPUs and first Xeon Phi's has been largely studied in the
last years, the new features in Knights Landing processors require the revision
of programming and optimization techniques for these devices. In this work, we
selected the Floyd-Warshall algorithm as a representative case study of graph
and memory-bound applications. Starting from the default serial version, we
show how data, thread and compiler level optimizations help the parallel
implementation to reach 338 GFLOPS.Comment: Computer Science - CACIC 2017. Springer Communications in Computer
and Information Science, vol 79
Predicative Ability of QCD Sum Rules for Decuplet Baryons
QCD sum rules for decuplet baryon two-point functions are investigated using
a comprehensive Monte-Carlo based procedure. In this procedure, all
uncertainties in the QCD input parameters are incorporated simultaneously,
resulting in realistic estimates of the uncertainties in the extracted
phenomenological parameters. Correlations between the QCD input parameters and
the phenomenological parameters are studied by way of scatter plots. The
predicted couplings are useful in evaluating matrix elements of decuplet
baryons in the QCD sum rule approach. They are also used to check a cubic
scaling law between baryon couplings and masses, as recently found by Dey and
coworkers. The results show a significant reduction in the scaling constant and
some possible deviations from the cubic law.Comment: 13 pages, RevTeX, 5 PS figures embedded with psfig.st
Sigma Signal for Hybrid Baryon Decay
We develop an ansatze of the sigma enhancement of the I=0, L=0 -
scattering amplitude as arising from a low-energy glueball pole. Using this
picture we estimate the to branching ratio for the decays
of the Roper resonance, which we previously found to be a hybrid in our QCD sum
rule calculation. We find that the sigma decay might be a good signal for
gluonic components of hadrons.Comment: Latex fil
Critical Behavior of J/psi across the Phase Transition from QCD sum rules
We study behavior of J/psi in hot gluonic matter using
QCD sum rules. Taking into account temperature dependences of the gluon
condensates extracted from lattice thermodynamics for the pure SU(3) system, we
find that the mass and width of J/psi exhibit rapid change across the critical
temperature.Comment: 5 pages, 3 figures. Poster contribution for Quark Matter 2008. To be
published in the proceeding
Isospin Breaking in the Pion-Nucleon Coupling from QCD Sum Rules
We use QCD sum rules for the three point function of a pseudoscalar and two
nucleonic currents in order to estimate the charge dependence of the pion
nucleon coupling constant coming from isospin violation in the
strong interaction. The effect can be attributed primarily to the difference of
the quark condensates . For the splitting
we obtain an interval of to , the uncertainties coming mainly from the input
parameters. The charged pion nucleon coupling is found to be the average of
and . Electromagnetic effects are not included.Comment: 18 pages (REVTeX) + 2 figures (as PostScript), to be published in
PRC, replaced with final version: inclusion of pi-eta mixing and N -> N*
transition
QCD sum rules for the pseudoscalar decay constants - To constrain the strange quark mass
We study the higher order corrections of quark masses to the
Gell-MannOakesRenner (GOR) relation by constructing QCD sum rules
exclusively for pseudoscalar mesons from the axial-vector correlation function,
. To project out
the pseudoscalar meson contributions, we apply to this
correlation function and construct sum rules for the decay constants of
pseudoscalar mesons, and . The OPE is proportional to
quark masses due to PCAC. To leading order in quark mass, each sum rule
reproduces the corresponding GOR relation. For kaon and , the deviation
from the GOR relation due to higher orders in quark mass is found to be
substantial. But the deviation gives better agreements with the phenomenology.
Our sum rule provides a sensitive relation between and , which
stringently constrain the value for . To reproduce the experimental value
for , is found to be 186 MeV at 1 GeV scale. The sum
rule also supports this finding.Comment: 14 pages including 3 figures. slightly revised. Accepted for
publication in Physical Review
White matter integrity as a predictor of response to treatment in first episode psychosis
The integrity of brain white matter connections is central to a patient's ability to respond to pharmacological interventions. This study tested this hypothesis using a specific measure of white matter integrity, and examining its relationship to treatment response using a prospective design in patients within their first episode of psychosis. Diffusion tensor imaging data were acquired in 63 patients with first episode psychosis and 52 healthy control subjects (baseline). Response was assessed after 12 weeks and patients were classified as responders or non-responders according to treatment outcome. At this second time-point, they also underwent a second diffusion tensor imaging scan. Tract-based spatial statistics were used to assess fractional anisotropy as a marker of white matter integrity. At baseline, non-responders showed lower fractional anisotropy than both responders and healthy control subjects (P < 0.05; family-wise error-corrected), mainly in the uncinate, cingulum and corpus callosum, whereas responders were indistinguishable from healthy control subjects. After 12 weeks, there was an increase in fractional anisotropy in both responders and non-responders, positively correlated with antipsychotic exposure. This represents one of the largest, controlled investigations of white matter integrity and response to antipsychotic treatment early in psychosis. These data, together with earlier findings on cortical grey matter, suggest that grey and white matter integrity at the start of treatment is an important moderator of response to antipsychotics. These findings can inform patient stratification to anticipate care needs, and raise the possibility that antipsychotics may restore white matter integrity as part of the therapeutic response
- …