12 research outputs found

    Twin-Width and Polynomial Kernels

    Get PDF
    We study the existence of polynomial kernels for parameterized problems without a polynomial kernel on general graphs, when restricted to graphs of bounded twin-width. It was previously observed in [Bonnet et al., ICALP\u2721] that the problem k-Independent Set allows no polynomial kernel on graph of bounded twin-width by a very simple argument, which extends to several other problems such as k-Independent Dominating Set, k-Path, k-Induced Path, k-Induced Matching. In this work, we examine the k-Dominating Set and variants of k-Vertex Cover for the existence of polynomial kernels. As a main result, we show that k-Dominating Set does not admit a polynomial kernel on graphs of twin-width at most 4 under a standard complexity-theoretic assumption. The reduction is intricate, especially due to the effort to bring the twin-width down to 4, and it can be tweaked to work for Connected k-Dominating Set and Total k-Dominating Set with a slightly worse bound on the twin-width. On the positive side, we obtain a simple quadratic vertex kernel for Connected k-Vertex Cover and Capacitated k-Vertex Cover on graphs of bounded twin-width. These kernels rely on that graphs of bounded twin-width have Vapnik-Chervonenkis (VC) density 1, that is, for any vertex set X, the number of distinct neighborhoods in X is at most c?|X|, where c is a constant depending only on the twin-width. Interestingly the kernel applies to any graph class of VC density 1, and does not require a witness sequence. We also present a more intricate O(k^{1.5}) vertex kernel for Connected k-Vertex Cover. Finally we show that deciding if a graph has twin-width at most 1 can be done in polynomial time, and observe that most graph optimization/decision problems can be solved in polynomial time on graphs of twin-width at most 1

    Proving a directed analogue of the Gyárfás-Sumner conjecture for orientations of P4

    Get PDF
    An oriented graph is a digraph that does not contain a directed cycle of length two. An (oriented) graph DD is HH-free if DD does not contain HH as an induced sub(di)graph. The Gyárfás-Sumner conjecture is a widely-open conjecture on simple graphs, which states that for any forest FF, there is some function ff such that every FF-free graph GG with clique number ω(G)\omega(G) has chromatic number at most f(ω(G))f(\omega(G)). Aboulker, Charbit, and Naserasr [Extension of Gyárfás-Sumner Conjecture to Digraphs; E-JC 2021] proposed an analogue of this conjecture to the dichromatic number of oriented graphs. The dichromatic number of a digraph DD is the minimum number of colors required to color the vertex set of DD so that no directed cycle in DD is monochromatic. Aboulker, Charbit, and Naserasr‘s χ→\overrightarrow{\chi}-boundedness conjecture states that for every oriented forest FF, there is some function ff such that every FF-free oriented graph DD has dichromatic number at most f(ω(D))f(\omega(D)), where ω(D)\omega(D) is the size of a maximum clique in the graph underlying DD. In this paper, we perform the first step towards proving Aboulker, Charbit, and Naserasr‘s χ→\overrightarrow{\chi}-boundedness conjecture by showing that it holds when FF is any orientation of a path on four vertices

    PACE Solver Description: DreyFVS

    Get PDF
    We describe DreyFVS, a heuristic for Directed Feedback Vertex Set submitted to the 2022 edition of Parameterized Algorithms and Computational Experiments Challenge. The Directed Feedback Vertex Set problem asks to remove a minimal number of vertices from a digraph such that the resulting digraph is acyclic. Our algorithm first performs a guess on a reduced instance by leveraging the Sinkhorn-Knopp algorithm, to then improve this solution by pipelining two local search methods

    Twin-width VI: the lens of contraction sequences

    No full text
    International audienceA contraction sequence of a graph consists of iteratively merging two of its vertices until only one vertex remains. The recently introduced twin-width graph invariant is based on contraction sequences. More precisely, if one puts error edges, henceforth red edges, between two vertices representing non-homogeneous subsets, the twin-width is the minimum integer d such that a contraction sequence exists that keeps red degree at most d. By changing the condition imposed on the trigraphs (i.e., graphs with some edges being red) and possibly slightly tweaking the notion of contractions, we show how to characterize the well-established bounded rank-width, tree-width, linear rank-width, path-width-usually defined in the framework of branch-decompositions-, and proper minor-closed classes by means of contraction sequences. Contraction sequences hold a crucial advantage over branch-decompositions: While one can scale down contraction sequences to capture classical width notions, the more general bounded twin-width goes beyond their scope, as it contains planar graphs in particular, a class with unbounded rank-width. As an application we give a transparent alternative proof of the celebrated Courcelle's theorem (actually of its generalization by Courcelle, Makowsky, and Rotics), that MSO2 (resp. MSO1) model checking on graphs with bounded tree-width (resp. bounded rank-width) is fixed-parameter tractable in the size of the input sentence. We are hopeful that our characterizations can help in other contexts. We then explore new avenues along the general theme of contraction sequences both in order to refine the landscape between bounded tree-width and bounded twin-width (via spanning twin-width) and to capture more general classes than bounded twin-width. To this end, we define an oriented version of twin-width, where appearing red edges are oriented away from the newly contracted vertex, and the mere red out-degree should remain bounded. Surprisingly, classes of bounded oriented twin-width coincide with those of bounded twin-width. This greatly simplifies the task of showing that a class has bounded twin-width. As an example, using a lemma by Norine, Seymour, Thomas, and Wollan, we give a 5-line proof that Kt-minor free graphs have bounded twin-width. Without oriented twin-width, this fact was shown by a somewhat intricate 4-page proof in the first paper of the series. Finally we explore the concept of partial contraction sequences, instead of terminating on a single-vertex graph, the sequence ends when reaching a particular target class. We show that FO model checking (resp. ∃FO model checking) is fixed-parameter tractable on classes with partial contraction sequences to a class of bounded degree (resp. bounded expansion), provided such a sequence is given. Efficiently finding such partial sequences could turn out simpler than finding a (complete) sequence

    Twin-width VI: the lens of contraction sequences

    No full text
    International audienceA contraction sequence of a graph consists of iteratively merging two of its vertices until only one vertex remains. The recently introduced twin-width graph invariant is based on contraction sequences. More precisely, if one puts error edges, henceforth red edges, between two vertices representing non-homogeneous subsets, the twin-width is the minimum integer d such that a contraction sequence exists that keeps red degree at most d. By changing the condition imposed on the trigraphs (i.e., graphs with some edges being red) and possibly slightly tweaking the notion of contractions, we show how to characterize the well-established bounded rank-width, tree-width, linear rank-width, path-width-usually defined in the framework of branch-decompositions-, and proper minor-closed classes by means of contraction sequences. Contraction sequences hold a crucial advantage over branch-decompositions: While one can scale down contraction sequences to capture classical width notions, the more general bounded twin-width goes beyond their scope, as it contains planar graphs in particular, a class with unbounded rank-width. As an application we give a transparent alternative proof of the celebrated Courcelle's theorem (actually of its generalization by Courcelle, Makowsky, and Rotics), that MSO2 (resp. MSO1) model checking on graphs with bounded tree-width (resp. bounded rank-width) is fixed-parameter tractable in the size of the input sentence. We are hopeful that our characterizations can help in other contexts. We then explore new avenues along the general theme of contraction sequences both in order to refine the landscape between bounded tree-width and bounded twin-width (via spanning twin-width) and to capture more general classes than bounded twin-width. To this end, we define an oriented version of twin-width, where appearing red edges are oriented away from the newly contracted vertex, and the mere red out-degree should remain bounded. Surprisingly, classes of bounded oriented twin-width coincide with those of bounded twin-width. This greatly simplifies the task of showing that a class has bounded twin-width. As an example, using a lemma by Norine, Seymour, Thomas, and Wollan, we give a 5-line proof that Kt-minor free graphs have bounded twin-width. Without oriented twin-width, this fact was shown by a somewhat intricate 4-page proof in the first paper of the series. Finally we explore the concept of partial contraction sequences, instead of terminating on a single-vertex graph, the sequence ends when reaching a particular target class. We show that FO model checking (resp. ∃FO model checking) is fixed-parameter tractable on classes with partial contraction sequences to a class of bounded degree (resp. bounded expansion), provided such a sequence is given. Efficiently finding such partial sequences could turn out simpler than finding a (complete) sequence

    Digraph redicolouring

    No full text
    International audienceIn this work, we generalize several results on graph recolouring to digraphs. Given two k-dicolourings of a digraph D, we prove that it is PSPACE-complete to decide whether we can transform one into the other by recolouring one vertex at each step while maintaining a dicolouring at any step even for k = 2 and for digraphs with maximum degree 5 or oriented planar graphs with maximum degree 6. A digraph is said to be k-mixing if there exists a transformation between any pair of k-dicolourings. We show that every digraph D is k-mixing for all k ≥ δ * min (D) + 2, generalizing a result due to Dyer et al. We also prove that every oriented graph ⃗ G is k-mixing for all k ≥ δ * max (⃗ G) + 1 and for all k ≥ δ * avg (⃗ G) + 1. Here δ * min , δ * max , and δ * avg denote the min-degeneracy, the max-degeneracy, and the average-degeneracy respectively. We pose as a conjecture that, for every digraph D, the dicolouring graph of D on k ≥ δ * min (D) + 2 colours has diameter at most O(|V (D)| 2). This is the analogue of Cereceda's conjecture for digraphs. We generalize to digraphs two results supporting Cereceda's conjecture. We first prove that the dicolouring graph of any digraph D on k ≥ 2δ * min (D) + 2 colours has linear diameter, extending a result from Bousquet and Perarnau. We also prove that the analogue of Cereceda's conjecture is true when k ≥ 3 2 (δ * min (D) + 1), which generalizes a result from Bousquet and Heinrich. Restricted to the special case of oriented graphs, we prove that the dicolouring graph of any subcubic oriented graph on k ≥ 2 colours is connected and has diameter at most 2n. We conjecture that every non 2-mixing oriented graph has maximum average degree at least 4, and we provide some support for this conjecture by proving it on the special case of 2-freezable oriented graphs. More generally, we show that every k-freezable oriented graph on n vertices must contain at least kn + k(k − 2) arcs, and we give a family of k-freezable oriented graphs that reach this bound. In the general case, we prove as a partial result that every non 2-mixing oriented graph has maximum average degree at least 7 2

    Digraph redicolouring

    No full text
    In this work, we generalize several results on graph recolouring to digraphs. Given two k-dicolourings of a digraph D, we prove that it is PSPACE-complete to decide whether we can transform one into the other by recolouring one vertex at each step while maintaining a dicolouring at any step even for k = 2 and for digraphs with maximum degree 5 or oriented planar graphs with maximum degree 6. A digraph is said to be k-mixing if there exists a transformation between any pair of k-dicolourings. We show that every digraph D is k-mixing for all k ≥ δ * min (D) + 2, generalizing a result due to Dyer et al. We also prove that every oriented graph G is k-mixing for all k ≥ δ * max (G) + 1 and for all k ≥ δ * avg (G) + 1. Here δ * min , δ * max , and δ * avg denote the min-degeneracy, the max-degeneracy, and the average-degeneracy respectively. We pose as a conjecture that, for every digraph D, the dicolouring graph of D on k ≥ δ * min (D) + 2 colours has diameter at most O(|V (D)| 2). This is the analogue of Cereceda's conjecture for digraphs. We generalize to digraphs two results supporting Cereceda's conjecture. We first prove that the dicolouring graph of any digraph D on k ≥ 2δ * min (D) + 2 colours has linear diameter, extending a result from Bousquet and Perarnau. We also prove that the analogue of Cereceda's conjecture is true when k ≥ 3 2 (δ * min (D) + 1), which generalizes a result from Bousquet and Heinrich. Restricted to the special case of oriented graphs, we prove that the dicolouring graph of any subcubic oriented graph on k ≥ 2 colours is connected and has diameter at most 2n. We conjecture that every non 2-mixing oriented graph has maximum average degree at least 4, and we provide some support for this conjecture by proving it on the special case of 2-freezable oriented graphs. More generally, we show that every k-freezable oriented graph on n vertices must contain at least kn + k(k − 2) arcs, and we give a family of k-freezable oriented graphs that reach this bound. In the general case, we prove as a partial result that every non 2-mixing oriented graph has maximum average degree at least 7 2

    Twin-width and polynomial kernels

    No full text
    International audienceWe study the existence of polynomial kernels, for parameterized problems without a polynomial kernel on general graphs, when restricted to graphs of bounded twin-width. Our main result is that a polynomial kernel for k-Dominating Set on graphs of twin-width at most 4 would contradict a standard complexity-theoretic assumption. The reduction is quite involved, especially to get the twin-width upper bound down to 4, and can be tweaked to work for Connected k-Dominating Set and Total k-Dominating Set (albeit with a worse upper bound on the twin-width). The k-Independent Set problem admits the same lower bound by a much simpler argument, previously observed [ICALP '21], which extends to k-Independent Dominating Set, k-Path, k-Induced Path, k-Induced Matching, etc. On the positive side, we obtain a simple quadratic vertex kernel for Connected k-Vertex Cover and Capacitated k-Vertex Cover on graphs of bounded twin-width. Interestingly the kernel applies to graphs of Vapnik-Chervonenkis density 1, and does not require a witness sequence. We also present a more intricate O(k^1.5) vertex kernel for Connected k-Vertex Cover. Finally we show that deciding if a graph has twin-width at most 1 can be done in polynomial time, and observe that most optimization/decision graph problems can be solved in polynomial time on graphs of twin-width at most 1

    Digraph redicolouring

    No full text
    In this work, we generalize several results on graph recolouring to digraphs. Given two k-dicolourings of a digraph D, we prove that it is PSPACE-complete to decide whether we can transform one into the other by recolouring one vertex at each step while maintaining a dicolouring at any step even for k = 2 and for digraphs with maximum degree 5 or oriented planar graphs with maximum degree 6. A digraph is said to be k-mixing if there exists a transformation between any pair of k-dicolourings. We show that every digraph D is k-mixing for all k ≥ δ * min (D) + 2, generalizing a result due to Dyer et al. We also prove that every oriented graph G is k-mixing for all k ≥ δ * max (G) + 1 and for all k ≥ δ * avg (G) + 1. Here δ * min , δ * max , and δ * avg denote the min-degeneracy, the max-degeneracy, and the average-degeneracy respectively. We pose as a conjecture that, for every digraph D, the dicolouring graph of D on k ≥ δ * min (D) + 2 colours has diameter at most O(|V (D)| 2). This is the analogue of Cereceda's conjecture for digraphs. We generalize to digraphs two results supporting Cereceda's conjecture. We first prove that the dicolouring graph of any digraph D on k ≥ 2δ * min (D) + 2 colours has linear diameter, extending a result from Bousquet and Perarnau. We also prove that the analogue of Cereceda's conjecture is true when k ≥ 3 2 (δ * min (D) + 1), which generalizes a result from Bousquet and Heinrich. Restricted to the special case of oriented graphs, we prove that the dicolouring graph of any subcubic oriented graph on k ≥ 2 colours is connected and has diameter at most 2n. We conjecture that every non 2-mixing oriented graph has maximum average degree at least 4, and we provide some support for this conjecture by proving it on the special case of 2-freezable oriented graphs. More generally, we show that every k-freezable oriented graph on n vertices must contain at least kn + k(k − 2) arcs, and we give a family of k-freezable oriented graphs that reach this bound. In the general case, we prove as a partial result that every non 2-mixing oriented graph has maximum average degree at least 7 2

    Twin-width and polynomial kernels

    No full text
    International audienceWe study the existence of polynomial kernels, for parameterized problems without a polynomial kernel on general graphs, when restricted to graphs of bounded twin-width. Our main result is that a polynomial kernel for k-Dominating Set on graphs of twin-width at most 4 would contradict a standard complexity-theoretic assumption. The reduction is quite involved, especially to get the twin-width upper bound down to 4, and can be tweaked to work for Connected k-Dominating Set and Total k-Dominating Set (albeit with a worse upper bound on the twin-width). The k-Independent Set problem admits the same lower bound by a much simpler argument, previously observed [ICALP '21], which extends to k-Independent Dominating Set, k-Path, k-Induced Path, k-Induced Matching, etc. On the positive side, we obtain a simple quadratic vertex kernel for Connected k-Vertex Cover and Capacitated k-Vertex Cover on graphs of bounded twin-width. Interestingly the kernel applies to graphs of Vapnik-Chervonenkis density 1, and does not require a witness sequence. We also present a more intricate O(k^1.5) vertex kernel for Connected k-Vertex Cover. Finally we show that deciding if a graph has twin-width at most 1 can be done in polynomial time, and observe that most optimization/decision graph problems can be solved in polynomial time on graphs of twin-width at most 1
    corecore