3,700 research outputs found

    Nanovoid nucleation by vacancy aggregation and vacancy-cluster coarsening in high-purity metallic single crystals

    Get PDF
    A numerical model to estimate critical times required for nanovoid nucleation in high-purity aluminum single crystals subjected to shock loading is presented. We regard a nanovoid to be nucleated when it attains a size sufficient for subsequent growth by dislocation-mediated plasticity. Nucleation is assumed to proceed by means of diffusion-mediated vacancy aggregation and subsequent vacancy cluster coarsening. Nucleation times are computed by a combination of lattice kinetic Monte Carlo simulations and simple estimates of nanovoid cavitation pressures and vacancy concentrations. The domain of validity of the model is established by considering rate-limiting physical processes and theoretical strength limits. The computed nucleation times are compared to experiments suggesting that vacancy aggregation and cluster coarsening are feasible mechanisms of nanovoid nucleation in a specific subdomain of the pressure-strain rate-temperature space

    Integrated cockpit for A-129

    Get PDF
    Weight, size, and mission requirements for the A-129 mandated an integrated system approach for the crew/cockpit interface design. Instead of the usual multitude of cockpit controls, indicators, gauges, and lights, the primary crew interface is a single multifunction keyboard and one or more multifunction CRT display units. This cockpit design approach imposed unusual constraints upon the system architecture to overcome the inherent information access limitations of a data input/output window that was restricted by the available space. The conceptual approach and resulting design of the A-129 cockpit with the intent to enhance the development of cockpit standardization are described

    Comparison of Standard Length, Fork Length, and Total Length for Measuring West Coast Marine Fishes

    Get PDF
    Measurements of adult marine fishes on the U.S. west coast are usually made using one of three methods: standard length, fork length, or total length. Each method has advantages and disadvantages. In this paper we attempt to determine whether one method is faster and/or more reliable than the other methods. We found that all three methods were comparable. There was no appreciable difference in the time it took to measure fish using the different methods. Fork length had the most reproducible results; however, it had the highest level of bias between researchers. We therefore suggest that selection of measurement type be based on what other researchers have used for the species under study. The best improvement in measurement reliability probably occurs by adequate training of personnel and not type of measurement used

    A cotunneling mechanism for all-electrical Electron Spin Resonance of single adsorbed atoms

    Get PDF
    The recent development of all-electrical electron spin resonance (ESR) in a scanning tunneling microscope (STM) setup has opened the door to vast applications. Despite the fast growing number of experimental works on STM-ESR, the fundamental principles remains unclear. By using a cotunneling picture, we show that the spin resonance signal can be explained as a time-dependent variation of the tunnel barrier induced by the alternating electric driving field. We demonstrate how this variation translates into the resonant frequency response of the direct current. Our cotunneling theory explains the main experimental findings. Namely, the linear dependence of the Rabi flop rate with the alternating bias amplitude, the absence of resonant response for spin-unpolarized currents, and the weak dependence on the actual atomic species.Comment: 11 pages, 3 figure

    Higgs boson production with one bottom quark including higher-order soft-gluon corrections

    Full text link
    A Higgs boson produced in association with one or more bottom quarks is of great theoretical and experimental interest to the high-energy community. A precise prediction of its total and differential cross-section can have a great impact on the discovery of a Higgs boson with large bottom-quark Yukawa coupling, like the scalar (h^0 and H^0) and pseudoscalar (A^0) Higgs bosons of the Minimal Supersymmetric Standard Model (MSSM) in the region of large \tan\beta. In this paper we apply the threshold resummation formalism to determine both differential and total cross-sections for b g \to b\Phi (where \Phi = h^0, H^0), including up to next-to-next-to-next-to-leading order (NNNLO) soft plus virtual QCD corrections at next-to-leading logarithmic (NLL) accuracy. We present results for both the Fermilab Tevatron and the CERN Large Hadron Collider (LHC).Comment: revtex4, 13 pages, 11 figures; new references and additional comment
    • …
    corecore