259 research outputs found

    Multi-machine benchmark of the self-consistent 1D scrape-off layer model DIV1D from stagnation point to target with SOLPS-ITER

    Get PDF
    This paper extends a 1D dynamic physics-based model of the scrape-off layer (SOL) plasma, DIV1D, to include the core SOL and possibly a second target. The extended model is benchmarked on 1D mapped SOLPS-ITER simulations to find input settings for DIV1D that allow it to describe SOL plasmas from upstream to target—calibrating it on a scenario and device basis. The benchmark shows a quantitative match between DIV1D and 1D mapped SOLPS-ITER profiles for the heat flux, electron temperature, and electron density within roughly 50% on: (1) the Tokamak Configuration Variable (TCV) for a gas puff scan; (2) a single SOLPS-ITER simulation of the Upgraded Mega Ampere Spherical Tokamak; and (3) the Upgraded Axially Symmetric Divertor EXperiment in Garching Tokamak (AUG) for a simultaneous scan in heating power and gas puff. Once calibrated, DIV1D self-consistently describes dependencies of the SOL solution on core fluxes and external neutral gas densities for a density scan on TCV whereas a varying SOL width is used in DIV1D for AUG to match a simultaneous change in power and density. The ability to calibrate DIV1D on a scenario and device basis is enabled by accounting for cross field transport with an effective flux expansion factor and by allowing neutrals to be exchanged between SOL and adjacent domains.</p

    The operational space for divertor power exhaust in DEMO with a super-X divertor

    Get PDF
    SOLPS-ITER simulations of the European DEMO reactor with a Super-X divertor, which has larger major radius at the outer target and increased connection length, show an increased operational space for divertor power exhaust compared to the conventional single-null configuration. Using a multi-fluid approach with fluid neutrals and charge-state bundling of impurities, we assessed the existence and boundaries of the operational space in the single-null and Super-X configurations by carrying out fuelling, seeding and power scans. Compared to the conventional single-null divertor, the Super-X divertor offers lower impurity concentration (factor ∼2 lower) at the same main plasma density, and consistent with this, it has lower main plasma density at the same impurity concentration level. This observed difference is in line with the simple analytical Lengyel model predictions resulting from the increased connection length in the super-X configuration. DEMO with a Super-X divertor demonstrates remarkable robustness against increases in input power, and in this study is able to exhaust the maximum expected steady-state separatrix-crossing power of 300 MW while maintaining acceptable impurity concentration along the separatrix This is something that was not possible in the single-null configuration in this study. This robustness of the Super-X divertor lies mostly in its capability to sufficiently dissipate power in its divertor via argon (Ar) radiation at acceptable Ar concentration, which is related to two factors: long (with respect to single-null) parallel connection length from the upstream to the outer target and higher but tolerable extrinsic impurity concentration at higher input powers. Finally, consistent with neon-seeded simulations of ITER, it is observed in all our simulations that the plasma density drops with increasing Ar concentration given fixed power input. We find that as the Ar content increases, the accompanying enhancement of Ar radiation reduces the power available for deuterium (D) to be ionized, thus limiting the D ionization particle source, and consequently reducing the plasma density

    Validation of SOLPS-ITER Simulations against the TCV-X21 Reference Case

    Full text link
    This paper presents a quantitative validation of SOLPS-ITER simulations against the TCV-X21 reference case and provides insights into the neutral dynamics and ionization source distribution in this scenario. TCV-X21 is a well-diagnosed diverted L-mode sheath-limited plasma scenario in both toroidal field directions, designed specifically for the validation of turbulence codes [D.S. Oliveira, T. Body, et al 2022 Nucl. Fusion 62 096001]. Despite the optimization to reduce the impact of the neutral dynamics, the absence of neutrals in previous turbulence simulations of TCV-X21 was identified as a possible explanation for the disagreements with the experimental data in the divertor region. This motivates the present study with SOLPS-ITER that includes kinetic neutral dynamics via EIRENE. Five new observables are added to the extensive, publicly available TCV-X21 dataset. These are three deuterium Balmer lines in the divertor and neutral pressure in the common and private flux regions. The quantitative agreement metric is combined with the conjugate gradient method to approach the SOLPS-ITER input parameters that return the best overall agreement with the experiment. A proof-of-principle of this method results in a modest improvement in the level-of-agreement; shortcomings of the method and how to improve it are discussed. Alternatively, a scan of the particle and heat diffusion coefficients shows an improvement of 10.4% beyond the agreement level achieved by the gradient method. The result is found for an increased transport coefficient compared to what is usually used for TCV L-mode plasmas, suggesting the need for accurate self-consistent turbulence models for predictive boundary simulations. The simulations indicate that ~65% of the total ionization occurs in the SOL, motivating the inclusion of neutrals in future turbulence simulations towards improved agreement with the experiment

    Scoping the characteristics and benefits of a connected double-null configuration for power exhaust in EU-DEMO

    Get PDF
    A double-null configuration is being considered for the EU-DEMO, due to its potential benefits for power exhaust arising from the use of two active divertors and magnetically disconnected low- and high-field sides. Using systematic parameter scans in fluid simulations, we have investigated the divertor power exhaust in the EU-DEMO in a connected double-null configuration, and compared the edge plasma properties to those obtained in a single-null configuration under detached conditions anticipated for reactor operation. Neglecting drift effects and kinetic behaviour of the neutrals, no clear benefits of the double-null configuration could yet be identified for the radiation pattern and power mitigation on open field lines. Future work should address the aforementioned physics as well as the effect of the additional X-point on core radiation

    Scoping the characteristics and benefits of a connected double-null configuration for power exhaust in EU-DEMO

    Get PDF
    A double-null configuration is being considered for the EU-DEMO, due to its potential benefits for power exhaust arising from the use of two active divertors and magnetically disconnected low- and high-field sides. Using systematic parameter scans in fluid simulations, we have investigated the divertor power exhaust in the EUDEMO in a connected double-null configuration, and compared the edge plasma properties to those obtained in a single-null configuration under detached conditions anticipated for reactor operation. Neglecting drift effects and kinetic behaviour of the neutrals, no clear benefits of the double-null configuration could yet be identified for the radiation pattern and power mitigation on open field lines. Future work should address the aforementioned physics as well as the effect of the additional X-point on core radiation

    SOLPS-ITER validation with TCV L-mode discharges editors-pick

    Get PDF
    This work presents a quantitative test of SOLPS-ITER simulations against tokamak a configuration variable (TCV) L-mode experiments. These simulations account for drifts, currents, kinetic neutrals, and carbon impurities providing the most complete edge transport simulations for TCV to date. The comparison is performed on nominally identical discharges carried out to assess the effectiveness of TCV's divertor baffles in the framework of the European Plasma Exhaust program and employs numerous edge diagnostics providing a detailed code-experiment benchmark for TCV. The simulations show a qualitative consistency, but the quantitative differences remain, which are assessed herein. It is found that, for a given separatrix density, the simulations most notably yield a colder, and denser, divertor state with a higher divertor neutral pressure than measured

    Reduction in benefits of total flux expansion on divertor detachment due to parallel flows

    Full text link
    The Super-X divertor (SXD) is an alternative divertor configuration leveraging total flux expansion at the outer strike point (OSP). Key features for the attractiveness of the SXD are facilitated detachment access and control, as predicted by the extended 2-point model (2PM). However, parallel flows are not consistently included in the 2PM. In this work, the 2PM is refined to overcome this limitation: the role of total flux expansion on the pressure balance is made explicit, by including the effect of parallel flows. In consequence, the effect of total flux expansion on detachment access and control is weakened, compared to predictions of the 2PM. This new model partially explains discrepancies between the 2PM and experiments performed on TCV, in ohmic L-mode scenarios, where in core density ramps in lower single-null (SN) configuration, the impact of the OSP major radius Rt on the CIII emission front movement in the divertor outer leg - used as a proxy for the plasma temperature - is substantially weaker than 2PM predictions; and in OSP sweeps in lower and upper SN configurations, with a constant core density, the peak parallel particle flux density at the OSP is almost independent of Rt, while the 2PM predicts a linear dependence. Finally, analytical and numerical modelling of parallel flows in the divertor is presented, to support the argument. It is shown that an increase in total flux expansion can favour supersonic flows at the OSP. Parallel flows are also shown to be relevant by analysing SOLPS-ITER simulations of TCV
    corecore