4,719 research outputs found

    The H.E.S.S. multi-messenger program

    Full text link
    Based on fundamental particle physics processes like the production and subsequent decay of pions in interactions of high-energy particles, close connections exist between the acceleration sites of high-energy cosmic rays and the emission of high-energy gamma rays and high-energy neutrinos. In most cases these connections provide both spatial and temporal correlations of the different emitted particles. The combination of the complementary information provided by these messengers allows to lift ambiguities in the interpretation of the data and enables novel and highly sensitive analyses. In this contribution the H.E.S.S. multi-messenger program is introduced and described. The current core of this newly installed program is the combination of high-energy neutrinos and high-energy gamma rays. The search for gamma-ray emission following gravitational wave triggers is also discussed. Furthermore, the existing program for following triggers in the electromagnetic regime was extended by the search for gamma-ray emission from Fast Radio Bursts (FRBs). An overview over current and planned analyses is given and recent results are presented.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherland

    Diversity of Zoanthids (Anthozoa: Hexacorallia) on Hawaiian Seamounts: Description of the Hawaiian Gold Coral and Additional Zoanthids

    Get PDF
    The Hawaiian gold coral has a history of exploitation from the deep slopes and seamounts of the Hawaiian Islands as one of the precious corals commercialised in the jewellery industry. Due to its peculiar characteristic of building a scleroproteic skeleton, this zoanthid has been referred as Gerardia sp. (a junior synonym of Savalia Nardo, 1844) but never formally described or examined by taxonomists despite its commercial interest. While collection of Hawaiian gold coral is now regulated, globally seamounts habitats are increasingly threatened by a variety of anthropogenic impacts. However, impact assessment studies and conservation measures cannot be taken without consistent knowledge of the biodiversity of such environments. Recently, multiple samples of octocoral-associated zoanthids were collected from the deep slopes of the islands and seamounts of the Hawaiian Archipelago. The molecular and morphological examination of these zoanthids revealed the presence of at least five different species including the gold coral. Among these only the gold coral appeared to create its own skeleton, two other species are simply using the octocoral as substrate, and the situation is not clear for the final two species. Phylogenetically, all these species appear related to zoanthids of the genus Savalia as well as to the octocoral-associated zoanthid Corallizoanthus tsukaharai, suggesting a common ancestor to all octocoral-associated zoanthids. The diversity of zoanthids described or observed during this study is comparable to levels of diversity found in shallow water tropical coral reefs. Such unexpected species diversity is symptomatic of the lack of biological exploration and taxonomic studies of the diversity of seamount hexacorals

    A luminosity constraint on the origin of unidentified high energy sources

    Full text link
    The identification of point sources poses a great challenge for the high energy community. We present a new approach to evaluate the likelihood of a set of sources being a Galactic population based on the simple assumption that galaxies similar to the Milky Way host comparable populations of gamma-ray emitters. We propose a luminosity constraint on Galactic source populations which complements existing approaches by constraining the abundance and spatial distribution of any objects of Galactic origin, rather than focusing on the properties of a specific candidate emitter. We use M31 as a proxy for the Milky Way, and demonstrate this technique by applying it to the unidentified EGRET sources. We find that it is highly improbable that the majority of the unidentified EGRET sources are members of a Galactic halo population (e.g., dark matter subhalos), but that current observations do not provide any constraints on all of these sources being Galactic objects if they reside entirely in the disk and bulge. Applying this method to upcoming observations by the Fermi Gamma-ray Space Telescope has the potential to exclude association of an even larger number of unidentified sources with any Galactic source class.Comment: 18 pages, 4 figures, to appear in JPhys

    Monte Carlo Simulation of Sinusoidally Modulated Superlattice Growth

    Full text link
    The fabrication of ZnSe/ZnTe superlattices grown by the process of rotating the substrate in the presence of an inhomogeneous flux distribution instead of successively closing and opening of source shutters is studied via Monte Carlo simulations. It is found that the concentration of each compound is sinusoidally modulated along the growth direction, caused by the uneven arrival of Se and Te atoms at a given point of the sample, and by the variation of the Te/Se ratio at that point due to the rotation of the substrate. In this way we obtain a ZnSe1x_{1-x}Tex_x alloy in which the composition xx varies sinusoidally along the growth direction. The period of the modulation is directly controlled by the rate of the substrate rotation. The amplitude of the compositional modulation is monotonous for small angular velocities of the substrate rotation, but is itself modulated for large angular velocities. The average amplitude of the modulation pattern decreases as the angular velocity of substrate rotation increases and the measurement position approaches the center of rotation. The simulation results are in good agreement with previously published experimental measurements on superlattices fabricated in this manner

    A two step algorithm for learning from unspecific reinforcement

    Get PDF
    We study a simple learning model based on the Hebb rule to cope with "delayed", unspecific reinforcement. In spite of the unspecific nature of the information-feedback, convergence to asymptotically perfect generalization is observed, with a rate depending, however, in a non- universal way on learning parameters. Asymptotic convergence can be as fast as that of Hebbian learning, but may be slower. Moreover, for a certain range of parameter settings, it depends on initial conditions whether the system can reach the regime of asymptotically perfect generalization, or rather approaches a stationary state of poor generalization.Comment: 13 pages LaTeX, 4 figures, note on biologically motivated stochastic variant of the algorithm adde

    Random Cluster Models on the Triangular Lattice

    Full text link
    We study percolation and the random cluster model on the triangular lattice with 3-body interactions. Starting with percolation, we generalize the star--triangle transformation: We introduce a new parameter (the 3-body term) and identify configurations on the triangles solely by their connectivity. In this new setup, necessary and sufficient conditions are found for positive correlations and this is used to establish regions of percolation and non-percolation. Next we apply this set of ideas to the q>1q>1 random cluster model: We derive duality relations for the suitable random cluster measures, prove necessary and sufficient conditions for them to have positive correlations, and finally prove some rigorous theorems concerning phase transitions.Comment: 24 pages, 1 figur

    EGRET Spectral Index and the Low-Energy Peak Position in the Spectral Energy Distribution of EGRET-Detected Blazars

    Full text link
    In current theoretical models of the blazar subclass of active galaxies, the broadband emission consists of two components: a low-frequency synchrotron component with a peak in the IR to X-ray band, and a high-frequency inverse Compton component with a peak in the gamma-ray band. In such models, the gamma-ray spectral index should be correlated with the location of the low-energy peak, with flatter gamma-ray spectra expected for blazars with synchrotron peaks at higher photon energies and vice versa. Using the EGRET-detected blazars as a sample, we examine this correlation and possible uncertainties in its construction.Comment: 17 pages including 1 figure, accepted for publication in The Astrophysical Journa
    corecore