74 research outputs found
Influence of the Barrier Shape on Resonant Activation
The escape of a Brownian particle over a dichotomously fluctuating barrier is
investigated for various shapes of the barrier. The problem of resonant
activation is revisited with the attention on the effect of the barrier shape
on optimal value of the mean escape time in the system. The characteristic
features of resonant behavior are analyzed for barriers switching either
between different heights, or "on" and "off" positions. PACS number(s):
05.10-a, 02.50.-r, 82.20.-wj.Comment: 7 pages, 8 figures, RevTex4. Manuscript has been revised and
enhanced. Pictures have been made more clear and some of them have been
cancelled. Additional references have been added. The paper has been
submitted to Phys. Rev.
Simultaneous ultrafast probing of intramolecular vibrations and photoinduced charge carriers in rubrene using broadband time-domain THz spectroscopy
The ultrafast frequency- and time-resolved complex dielec. responses of photoexcited, single-crystal rubrene at n = 10-30 THz were detd. using ultrafast broadband far-IR spectra. In this frequency range, the responses of both photogenerated mobile charges and intramol. vibrational modes were obsd. simultaneously, both of which vary with time after excitation. The data in conjunction with a theor. model indicate a dynamic blueshift of the 15.5 THz phonon. [on SciFinder (R)
Weak noise approach to the logistic map
Using a nonperturbative weak noise approach we investigate the interference
of noise and chaos in simple 1D maps. We replace the noise-driven 1D map by an
area-preserving 2D map modelling the Poincare sections of a conserved dynamical
system with unbounded energy manifolds. We analyze the properties of the 2D map
and draw conclusions concerning the interference of noise on the nonlinear time
evolution. We apply this technique to the standard period-doubling sequence in
the logistic map. From the 2D area-preserving analogue we, in addition to the
usual period-doubling sequence, obtain a series of period doubled cycles which
are elliptic in nature. These cycles are spinning off the real axis at
parameters values corresponding to the standard period doubling events.Comment: 22 pages in revtex and 8 figures in ep
Reliability of fluctuation-induced transport in a Maxwell-demon-type engine
We study the transport properties of an overdamped Brownian particle which is
simultaneously in contact with two thermal baths. The first bath is modeled by
an additive thermal noise at temperature . The second bath is associated
with a multiplicative thermal noise at temperature . The analytical
expressions for the particle velocity and diffusion constant are derived for
this system, and the reliability or coherence of transport is analyzed by means
of their ratio in terms of a dimensionless P\'{e}clet number. We find that the
transport is not very coherent, though one can get significantly higher
currents.Comment: 14 pages, 5 figure
Effective rate equations for the over-damped motion in fluctuating potentials
We discuss physical and mathematical aspects of the over-damped motion of a
Brownian particle in fluctuating potentials. It is shown that such a system can
be described quantitatively by fluctuating rates if the potential fluctuations
are slow compared to relaxation within the minima of the potential, and if the
position of the minima does not fluctuate. Effective rates can be calculated;
they describe the long-time dynamics of the system. Furthermore, we show the
existence of a stationary solution of the Fokker-Planck equation that describes
the motion within the fluctuating potential under some general conditions. We
also show that a stationary solution of the rate equations with fluctuating
rates exists.Comment: 18 pages, 2 figures, standard LaTeX2
Spin Exciton in quantum dot with spin orbit coupling in high magnetic field
Coulomb interactions of few () electrons confined in a disk shaped
quantum dot, with a large magnetic field applied in the z-direction
(orthogonal to the dot), produce a fully spin polarized ground state. We
numerically study the splitting of the levels corresponding to the multiplet of
total spin (each labeled by a different total angular momentum )
in presence of an electric field parallel to , coupled to by a
Rashba term. We find that the first excited state is a spin exciton with a
reversed spin at the origin. This is reminiscent of the Quantum Hall
Ferromagnet at filling one which has the skyrmion-like state as its first
excited state. The spin exciton level can be tuned with the electric field and
infrared radiation can provide energy and angular momentum to excite it.Comment: 9 pages, 9 figures. submitted to Phys.Rev.
Electronic structure of rectangular quantum dots
We study the ground state properties of rectangular quantum dots by using the
spin-density-functional theory and quantum Monte Carlo methods. The dot
geometry is determined by an infinite hard-wall potential to enable comparison
to manufactured, rectangular-shaped quantum dots. We show that the electronic
structure is very sensitive to the deformation, and at realistic sizes the
non-interacting picture determines the general behavior. However, close to the
degenerate points where Hund's rule applies, we find spin-density-wave-like
solutions bracketing the partially polarized states. In the
quasi-one-dimensional limit we find permanent charge-density waves, and at a
sufficiently large deformation or low density, there are strongly localized
stable states with a broken spin-symmetry.Comment: 8 pages, 9 figures, submitted to PR
Stochastic Resonance in Ion Channels Characterized by Information Theory
We identify a unifying measure for stochastic resonance (SR) in voltage
dependent ion channels which comprises periodic (conventional), aperiodic and
nonstationary SR. Within a simplest setting, the gating dynamics is governed by
two-state conductance fluctuations, which switch at random time points between
two values. The corresponding continuous time point process is analyzed by
virtue of information theory. In pursuing this goal we evaluate for our
dynamics the tau-information, the mutual information and the rate of
information gain. As a main result we find an analytical formula for the rate
of information gain that solely involves the probability of the two channel
states and their noise averaged rates. For small voltage signals it simplifies
to a handy expression. Our findings are applied to study SR in a potassium
channel. We find that SR occurs only when the closed state is predominantly
dwelled. Upon increasing the probability for the open channel state the
application of an extra dose of noise monotonically deteriorates the rate of
information gain, i.e., no SR behavior occurs.Comment: 10 pages, 2 figures, to appear in Phys. Rev.
Automated final lesion segmentation in posterior circulation acute ischemic stroke using deep learning
Final lesion volume (FLV) is a surrogate outcome measure in anterior circulation stroke (ACS). In posterior circulation stroke (PCS), this relation is plausibly understudied due to a lack of methods that automatically quantify FLV. The applicability of deep learning approaches to PCS is limited due to its lower incidence compared to ACS. We evaluated strategies to develop a convolutional neural network (CNN) for PCS lesion segmentation by using image data from both ACS and PCS patients. We included follow-up non-contrast computed tomography scans of 1018 patients with ACS and 107 patients with PCS. To assess whether an ACS lesion segmentation generalizes to PCS, a CNN was trained on ACS data (ACS-CNN). Second, to evaluate the performance of only including PCS patients, a CNN was trained on PCS data. Third, to evaluate the performance when combining the datasets, a CNN was trained on both datasets. Finally, to evaluate the performance of transfer learning, the ACS-CNN was fine-tuned using PCS patients. The transfer learning strategy outperformed the other strategies in volume agreement with an intra-class correlation of 0.88 (95% CI: 0.83–0.92) vs. 0.55 to 0.83 and a lesion detection rate of 87% vs. 41–77 for the other strategies. Hence, transfer learning improved the FLV quantification and detection rate of PCS lesions compared to the other strategies
- …