2,249 research outputs found

    Slice Stretching at the Event Horizon when Geodesically Slicing the Schwarzschild Spacetime with Excision

    Get PDF
    Slice-stretching effects are discussed as they arise at the event horizon when geodesically slicing the extended Schwarzschild black-hole spacetime while using singularity excision. In particular, for Novikov and isotropic spatial coordinates the outward movement of the event horizon (``slice sucking'') and the unbounded growth there of the radial metric component (``slice wrapping'') are analyzed. For the overall slice stretching, very similar late time behavior is found when comparing with maximal slicing. Thus, the intuitive argument that attributes slice stretching to singularity avoidance is incorrect.Comment: 5 pages, 2 figures, published version including minor amendments suggested by the refere

    Ultrafast spatio-temporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases

    Get PDF
    We present a combined theoretical and experimental study of spatio-temporal propagation effects in terahertz (THz) generation in gases using two-color ionizing laser pulses. The observed strong broadening of the THz spectra with increasing gas pressure reveals the prominent role of spatio-temporal reshaping and of a plasma-induced blue-shift of the pump pulses in the generation process. Results obtained from (3+1)-dimensional simulations are in good agreement with experimental findings and clarify the mechanisms responsible for THz emission

    Temperature Relaxation in Hot Dense Hydrogen

    Full text link
    Temperature equilibration of hydrogen is studied for conditions relevant to inertial confinement fusion. New molecular-dynamics simulations and results from quantum many-body theory are compared with Landau-Spitzer (LS) predictions for temperatures T from 50 eV to 5000 eV, and densities with Wigner-Seitz radii r_s = 1.0 and 0.5. The relaxation is slower than the LS result, even for temperatures in the keV range, but converges to agreement in the high-T limit.Comment: 4 pages PRL style, two figure

    Full density matrix dynamics for large quantum systems: Interactions, Decoherence and Inelastic effects

    Full text link
    We develop analytical tools and numerical methods for time evolving the total density matrix of the finite-size Anderson model. The model is composed of two finite metal grains, each prepared in canonical states of differing chemical potential and connected through a single electronic level (quantum dot or impurity). Coulomb interactions are either excluded all together, or allowed on the dot only. We extend this basic model to emulate decoherring and inelastic scattering processes for the dot electrons with the probe technique. Three methods, originally developed to treat impurity dynamics, are augmented to yield global system dynamics: the quantum Langevin equation method, the well known fermionic trace formula, and an iterative path integral approach. The latter accommodates interactions on the dot in a numerically exact fashion. We apply the developed techniques to two open topics in nonequilibrium many-body physics: (i) We explore the role of many-body electron-electron repulsion effects on the dynamics of the system. Results, obtained using exact path integral simulations, are compared to mean-field quantum Langevin equation predictions. (ii) We analyze aspects of quantum equilibration and thermalization in large quantum systems using the probe technique, mimicking elastic-dephasing effects and inelastic interactions on the dot. Here, unitary simulations based on the fermionic trace formula are accompanied by quantum Langevin equation calculations

    Weak noise approach to the logistic map

    Full text link
    Using a nonperturbative weak noise approach we investigate the interference of noise and chaos in simple 1D maps. We replace the noise-driven 1D map by an area-preserving 2D map modelling the Poincare sections of a conserved dynamical system with unbounded energy manifolds. We analyze the properties of the 2D map and draw conclusions concerning the interference of noise on the nonlinear time evolution. We apply this technique to the standard period-doubling sequence in the logistic map. From the 2D area-preserving analogue we, in addition to the usual period-doubling sequence, obtain a series of period doubled cycles which are elliptic in nature. These cycles are spinning off the real axis at parameters values corresponding to the standard period doubling events.Comment: 22 pages in revtex and 8 figures in ep

    Violet stimulated luminescence dating of quartz from Luochuan (Chinese loess plateau): Agreement with independent chronology up to ∼600 ka

    Get PDF
    Luminescence dating at the Luochuan loess type (China) section is at present limited to ∼0.1 Ma using quartz blue light stimulated luminescence (BLSL), but can be extended back in time to ∼0.5 Ma by resorting to the more developmental post-infrared infrared stimulated luminescence (post-IR IRSL) and thermally transferred OSL (TT-OSL) signals. Since both the latter are associated with systematic uncertainties due to the potential (a)-thermal instability of these signals, a search continues for alternative, and demonstrably stable luminescence signals that can cover the entire Quaternary timescale. Here we explore the violet stimulated luminescence (VSL) signal at the Luochuan section, which provides a continuous archive of homogenous sediment with favourable luminescence characteristics and a solid independent age framework. By testing several VSL protocols and their associated performance, we demonstrate that the Multi-Aliquot Additive-Dose (MAAD) protocol produces a VSL chronology at Luochuan which is in agreement with independent ages up to ∼0.6 Ma. For a more representative environmental dose rate of ∼2 Gy/ka (∼35% lower than at Luochuan), the documented range of MAAD-VSL sensitivity (200-1800 Gy) would correspond to the ability to date sediment up to ∼1 Ma back in time, offering a remarkable advance over existing methods.</p

    Magnetic phases of one-dimensional lattices with 2 to 4 fermions per site

    Full text link
    We study the spectral and magnetic properties of one-dimensional lattices filled with 2 to 4 fermions (with spin 1/2) per lattice site. We use a generalized Hubbard model that takes account all interactions on a lattice site, and solve the many-particle problem by exact diagonalization. We find an intriguing magnetic phase diagram which includes ferromagnetism, spin-one Heisenberg antiferromagnetism, and orbital antiferromagnetism.Comment: 8 pages, 6 figure
    • …
    corecore