3,628 research outputs found

    Condensates of p-wave pairs are exact solutions for rotating two-component Bose gases

    Full text link
    We derive exact analytical results for the wave functions and energies of harmonically trapped two-component Bose-Einstein condensates with weakly repulsive interactions under rotation. The isospin symmetric wave functions are universal and do not depend on the matrix elements of the two-body interaction. The comparison with the results from numerical diagonalization shows that the ground state and low-lying excitations consists of condensates of p-wave pairs for repulsive contact interactions, Coulomb interactions, and the repulsive interactions between aligned dipoles.Comment: 4 pages, 1 figure; revised version explains exact solutions in terms of isospin symmetry and Hund's rul

    Few-body precursor of the Higgs mode in a superfluid Fermi gas

    Full text link
    We demonstrate that an undamped few-body precursor of the Higgs mode can be investigated in a harmonically trapped Fermi gas. Using exact diagonalisation, the lowest monopole mode frequency is shown to depend non-monotonically on the interaction strength, having a minimum in a crossover region. The minimum deepens with increasing particle number, reflecting that the mode is the few-body analogue of a many-body Higgs mode in the superfluid phase, which has a vanishing frequency at the quantum phase transition point to the normal phase. We show that this mode mainly consists of coherent excitations of time-reversed pairs, and that it can be selectively excited by modulating the interaction strength, using for instance a Feshbach resonance in cold atomic gases.Comment: 9 pages, 7 figure

    Exact diagonalization results for an anharmonically trapped Bose-Einstein condensate

    Full text link
    We consider bosonic atoms that rotate in an anharmonic trapping potential. Using numerical diagonalization of the Hamiltonian, we identify the various phases of the gas as the rotational frequency of the trap and the coupling between the atoms are varied.Comment: 7 pages, RevTex, 10 figure

    Comment on ``Fragmented Condensate Ground State of Trapped Weakly Interacting Bosons in Two Dimensions"

    Full text link
    Recently Liu et al. [PRL 87, 030404 (2001)] examined the lowest state of a weakly-interacting Bose-Einstein condensate. In addition to other interesting results, using the method of the pair correlation function, they questioned the validity of the mean-field picture of the formation of vortices and stated that the vortices are generated at the center of the cloud. This is in apparent contradiction to the Gross-Pitaevskii approach, which predicts that the vortices successively enter the cloud from its outer parts as L/N (where N is the number of atoms in the trap and hbar(L) is the angular momentum of the system) increases. We have managed to reproduce the results of Liu et al. however a more careful analysis presented below confirms the validity of the mean-field approach.Comment: 1 page, RevTex, 2 figure

    Tunable Wigner States with Dipolar Atoms and Molecules

    Full text link
    We study the few-body physics of trapped atoms or molecules with electric or magnetic dipole moments aligned by an external field. Using exact numerical diagonalization appropriate for the strongly correlated regime, as well as a classical analysis, we show how Wigner localization emerges with increasing coupling strength. The Wigner states exhibit non-trivial geometries due to the anisotropy of the interaction. This leads to transitions between different Wigner states as the tilt angle of the dipoles with the confining plane is changed. Intriguingly, while the individual Wigner states are well described by a classical analysis, the transitions between different Wigner states are strongly affected by quantum statistics. This can be understood by considering the interplay between quantum-mechanical and spatial symmetry properties. Finally, we demonstrate that our results are relevant to experimentally realistic systems.Comment: 4 pages, 6 figure

    Slice Stretching Effects for Maximal Slicing of a Schwarzschild Black Hole

    Full text link
    Slice stretching effects such as slice sucking and slice wrapping arise when foliating the extended Schwarzschild spacetime with maximal slices. For arbitrary spatial coordinates these effects can be quantified in the context of boundary conditions where the lapse arises as a linear combination of odd and even lapse. Favorable boundary conditions are then derived which make the overall slice stretching occur late in numerical simulations. Allowing the lapse to become negative, this requirement leads to lapse functions which approach at late times the odd lapse corresponding to the static Schwarzschild metric. Demanding in addition that a numerically favorable lapse remains non-negative, as result the average of odd and even lapse is obtained. At late times the lapse with zero gradient at the puncture arising for the puncture evolution is precisely of this form. Finally, analytic arguments are given on how slice stretching effects can be avoided. Here the excision technique and the working mechanism of the shift function are studied in detail.Comment: 16 pages, 4 figures, revised version including a study on how slice stretching can be avoided by using excision and/or shift

    Metastability of persistent currents in trapped gases of atoms

    Full text link
    We examine the conditions that give rise to metastable, persistent currents in a trapped Bose-Einstein condensate. A necessary condition for the stability of persistent currents is that the trapping potential is not a monotonically increasing function of the distance from the trap center. Persistent currents also require that the interatomic interactions are sufficiently strong and repulsive. Finally, any off-center vortex state is shown to be unstable, while a driven gas shows hysteresis.Comment: 7 pages, RevTex, 5 figure

    Mixtures of Bose gases under rotation

    Full text link
    We examine the rotational properties of a mixture of two Bose gases. Considering the limit of weak interactions between the atoms, we investigate the behavior of the system under a fixed angular momentum. We demonstrate a number of exact results in this many-body system.Comment: 4 pages, RevTex, 6 figure

    Persistent currents in Bose gases confined in annular traps

    Full text link
    We examine the problem of stability of persistent currents in a mixture of two Bose gases trapped in an annular potential. We evaluate the critical coupling for metastability in the transition from quasi-one to two-dimensional motion. We also evaluate the critical coupling for metastability in a mixture of two species as function of the population imbalance. The stability of the currents is shown to be sensitive to the deviation from one-dimensional motion.Comment: 6 pages, 4 figure
    • …
    corecore