4 research outputs found

    The Influence of Casein Coatings on the Corrosion Behavior of Mg-Based Alloys

    No full text
    This article discusses the influence of conversion casein coatings with a thickness of about 20 µm on the structure and the corrosion behavior of two magnesium alloys: MgCa2Zn1 and MgCa2Zn1Gd3. Casein is a protein that, along with whey protein, is a part of milk. Casein coatings are appropriate for bone growth because they contain high amounts of calcium and phosphorus. In this work, casein coatings and casein-free coatings were applied on Mg-based alloys using the conversion process. The structure and topography observations were presented. The corrosion behavior was determined by electrochemical and immersion tests, and electrochemical impedance spectroscopy (EIS) in chloride-rich Ringer solution. The obtained results show that conversion casein coatings effectively protect Mg-based alloys against corrosion. This was confirmed by higher corrosion potentials (Ecorr), polarization resistances (Rp) derived from Tafel’s and EIS analysis, as well as low hydrogen release. The volume of hydrogen released after 216 h of immersion for casein coatings applied to MgCa2Zn1 and MgCa2Zn1Gd3 alloys was 19.25 and 12.42 mL/cm2, respectively. The improvement in corrosion resistance of casein coatings was more significant for Mg alloy dopped with gadolinium. The lower corrosion rate of casein conversion coatings is explained by the synergistic effect of the addition of Gd in the Mg-based alloy and the formation of dense, tight conversion casein coatings on the surface of this alloy

    Investigations of TiO₂, Ti/TiO₂, and Ti/TiO₂/Ti/TiO₂ coatings produced by ALD and PVD methods on Mg-(Li)-Al-RE alloys substrates

    No full text
    Magnesium alloys have recently become increasingly popular in many sectors of the industry due to their unique properties, such as low density, high specific strength, vibration damping ability along with their recyclability and excellent machinability. Nowadays, thin films have been attracting more attention in applications that improve mechanical and corrosion properties. The following alloys were used for the coated Mg-Al-RE and the ultra-light magnesium-lithium alloy of the Mg-Li-Al-RE type. A single layer of TiO2 was deposited using the atomic layer deposition ALD method. Multiple layers of the Ti/TiO₂ and Ti/TiO₂/Ti/TiO₂ type were obtained by the MS-PVD magnetron sputtering technique. Samples were investigated by scanning and a transmission electron microscope (SEM, TEM) and their morphology was studied by an atomic forces microscope (AFM). Further examinations, including electrochemical corrosion, roughness and tribology, were also carried out. As a result of the research, it was found that the best electrochemical properties are exhibited by single TiO2 layers obtained by the ALD method. Moreover, it was found that the Ti/TiO₂/Ti/TiO₂ double film has better properties than the Ti/TiO₂ film
    corecore