6,931 research outputs found

    Fiber length and orientation prevent migration in fluid filters

    Get PDF
    Stainless steel fiber web filter resists fiber migration which causes contamination of filtered fluids. This filter is capable of holding five times more particulate matter before arbitrary cutoff pressure drop and shows excellent retention in fuel flow at high rates

    Hyperelliptic Integrable Systems on K3 and Rational Surfaces

    Full text link
    We show several examples of integrable systems related to special K3 and rational surfaces (e.g., an elliptic K3 surface, a K3 surface given by a double covering of the projective plane, a rational elliptic surface, etc.). The construction, based on Beauvilles's general idea, is considerably simplified by the fact that all examples are described by hyperelliptic curves and Jacobians. This also enables to compare these integrable systems with more classical integrable systems, such as the Neumann system and the periodic Toda chain, which are also associated with rational surfaces. A delicate difference between the cases of K3 and of rational surfaces is pointed out therein.Comment: LaTeX2e using packages "amsmath,amssymb", 15 pages, no figur

    Distribution System State Estimation in the Presence of High Solar Penetration

    Full text link
    Low-to-medium voltage distribution networks are experiencing rising levels of distributed energy resources, including renewable generation, along with improved sensing, communication, and automation infrastructure. As such, state estimation methods for distribution systems are becoming increasingly relevant as a means to enable better control strategies that can both leverage the benefits and mitigate the risks associated with high penetration of variable and uncertain distributed generation resources. The primary challenges of this problem include modeling complexities (nonlinear, non-convex power-flow equations), limited availability of sensor measurements, and high penetration of uncertain renewable generation. This paper formulates the distribution system state estimation as a nonlinear, weighted, least squares problem, based on sensor measurements as well as forecast data (both load and generation). We investigate the sensitivity of state estimator accuracy to (load/generation) forecast uncertainties, sensor accuracy, and sensor coverage levels.Comment: accepted for presentation at the IEEE 2019 American Control Conferenc
    corecore