893 research outputs found

    Sodium bicarbonate and high-intensity-cycling capacity: variability in responses

    Get PDF
    Purpose: The aim of this study was to determine whether gastrointestinal (GI) distress affects the ergogenicity of sodium bicarbonate and whether the degree of alkalaemia or other metabolic responses are different between individuals who improve exercise capacity and those who do not. Methods: Twenty-one males completed two cycling capacity tests at 110% of maximum power output. Participants were supplemented with 0.3 g∙kg-1BM of either placebo (maltodextrin) or sodium bicarbonate (SB). Blood pH, bicarbonate, base excess and lactate were determined at baseline, pre-exercise, immediately post-exercise and 5 minutes post-exercise. Results: SB supplementation did not significantly increase total work done (TWD) (P = 0.16, 46.8 ± 9.1 vs. 45.6 ± 8.4 kJ, d = 0.14), although magnitude based inferences suggested a 63% likelihood of a positive effect. When data were analysed without four participants who experienced GI discomfort, TWD (P = 0.01) was significantly improved with SB. Immediately post-exercise blood lactate was higher in SB for the individuals who improved but not for those who didn’t. There were also differences in the pre to post-exercise change in blood pH, bicarbonate and base excess between individuals who improved and individuals who did not. Conclusions: SB improved high intensity cycling capacity, but only with the exclusion of participants experiencing GI discomfort. Differences in blood responses suggest that sodium bicarbonate may not be beneficial to all individuals. Magnitude based inferences suggested that the exercise effects are unlikely to be negative; therefore individuals should determine whether they respond well to sodium bicarbonate supplementation prior to competition

    Nanosize Titanium Dioxide Stimulates Reactive Oxygen Species in Brain Microglia and Damages Neurons in Vitro

    Get PDF
    BackgroundTitanium dioxide is a widely used nanomaterial whose photo-reactivity suggests that it could damage biological targets (e.g., brain) through oxidative stress (OS).ObjectivesBrain cultures of immortalized mouse microglia (BV2), rat dopaminergic (DA) neurons (N27), and primary cultures of embryonic rat striatum, were exposed to Degussa P25, a commercially available TiO2 nanomaterial. Physical properties of P25 were measured under conditions that paralleled biological measures.FindingsP25 rapidly aggregated in physiological buffer (800–1,900 nm; 25°C) and exposure media (~ 330 nm; 37°C), and maintained a negative zeta potential in both buffer (–12.2 ± 1.6 mV) and media (–9.1 ± 1.2 mV). BV2 microglia exposed to P25 (2.5–120 ppm) responded with an immediate and prolonged release of reactive oxygen species (ROS). Hoechst nuclear stain was reduced after 24-hr (≥100 ppm) and 48-hr (≥2.5 ppm) exposure. Microarray analysis on P25-exposed BV2 microglia indicated up-regulation of inflammatory, apoptotic, and cell cycling pathways and down-regulation of energy metabolism. P25 (2.5–120 ppm) stimulated increases of intracellular ATP and caspase 3/7 activity in isolated N27 neurons (24–48 hr) but did not produce cytotoxicity after 72-hr exposure. Primary cultures of rat striatum exposed to P25 (5 ppm) showed a reduction of immunohistochemically stained neurons and microscopic evidence of neuronal apoptosis after 6-hr exposure. These findings indicate that P25 stimulates ROS in BV2 microglia and is nontoxic to isolated N27 neurons. However, P25 rapidly damages neurons at low concentrations in complex brain cultures, plausibly though microglial generated ROS

    Aerobic capacity, activity levels and daily energy expenditure in male and female adolescents of the kenyan nandi sub-group

    Get PDF
    The relative importance of genetic and socio-cultural influences contributing to the success of east Africans in endurance athletics remains unknown in part because the pre-training phenotype of this population remains incompletely assessed. Here cardiopulmonary fitness, physical activity levels, distance travelled to school and daily energy expenditure in 15 habitually active male (13.9±1.6 years) and 15 habitually active female (13.9±1.2) adolescents from a rural Nandi primary school are assessed. Aerobic capacity ([Formula: see text]) was evaluated during two maximal discontinuous incremental exercise tests; physical activity using accelerometry combined with a global positioning system; and energy expenditure using the doubly labelled water method. The [Formula: see text] of the male and female adolescents were 73.9±5.7 ml(.) kg(-1.) min(-1) and 61.5±6.3 ml(.) kg(-1.) min(-1), respectively. Total time spent in sedentary, light, moderate and vigorous physical activities per day was 406±63 min (50% of total monitored time), 244±56 min (30%), 75±18 min (9%) and 82±30 min (10%). Average total daily distance travelled to and from school was 7.5±3.0 km (0.8-13.4 km). Mean daily energy expenditure, activity-induced energy expenditure and physical activity level was 12.2±3.4 MJ(.) day(-1), 5.4±3.0 MJ(.) day(-1) and 2.2±0.6. 70.6% of the variation in [Formula: see text] was explained by sex (partial R(2) = 54.7%) and body mass index (partial R(2) = 15.9%). Energy expenditure and physical activity variables did not predict variation in [Formula: see text] once sex had been accounted for. The highly active and energy-demanding lifestyle of rural Kenyan adolescents may account for their exceptional aerobic fitness and collectively prime them for later training and athletic success

    Investigating the association between obesity and asthma in 6- to 8-year-old Saudi children:a matched case-control study

    Get PDF
    Background: Previous studies have demonstrated an association between obesity and asthma, but there remains considerable uncertainty about whether this reflects an underlying causal relationship. Aims: To investigate the association between obesity and asthma in pre-pubertal children and to investigate the roles of airway obstruction and atopy as possible causal mechanisms. Methods: We conducted an age- and sex-matched case–control study of 1,264 6- to 8-year-old schoolchildren with and without asthma recruited from 37 randomly selected schools in Madinah, Saudi Arabia. The body mass index (BMI), waist circumference and skin fold thickness of the 632 children with asthma were compared with those of the 632 control children without asthma. Associations between obesity and asthma, adjusted for other potential risk factors, were assessed separately in boys and girls using conditional logistic regression analysis. The possible mediating roles of atopy and airway obstruction were studied by investigating the impact of incorporating data on sensitisation to common aeroallergens and measurements of lung function. Results: BMI was associated with asthma in boys (odds ratio (OR)=1.14, 95% confidence interval (CI), 1.08–1.20; adjusted OR=1.11, 95% CI, 1.03–1.19) and girls (OR=1.37, 95% CI, 1.26–1.50; adjusted OR=1.38, 95% CI, 1.23–1.56). Adjusting for forced expiratory volume in 1 s had a negligible impact on these associations, but these were attenuated following adjustment for allergic sensitisation, particularly in girls (girls: OR=1.25; 95% CI, 0.96–1.60; boys: OR=1.09, 95% CI, 0.99–1.19). Conclusions: BMI is associated with asthma in pre-pubertal Saudi boys and girls; this effect does not appear to be mediated through respiratory obstruction, but in girls this may at least partially be mediated through increased risk of allergic sensitisation

    Local Cattle and Badger Populations Affect the Risk of Confirmed Tuberculosis in British Cattle Herds

    Get PDF
    Background: The control of bovine tuberculosis (bTB) remains a priority on the public health agenda in Great Britain, after launching in 1998 the Randomised Badger Culling Trial (RBCT) to evaluate the effectiveness of badger (Meles meles) culling as a control strategy. Our study complements previous analyses of the RBCT data (focusing on treatment effects) by presenting analyses of herd-level risks factors associated with the probability of a confirmed bTB breakdown in herds within each treatment: repeated widespread proactive culling, localized reactive culling and no culling (survey-only). Methodology/Principal Findings: New cases of bTB breakdowns were monitored inside the RBCT areas from the end of the first proactive badger cull to one year after the last proactive cull. The risk of a herd bTB breakdown was modeled using logistic regression and proportional hazard models adjusting for local farm-level risk factors. Inside survey-only and reactive areas, increased numbers of active badger setts and cattle herds within 1500 m of a farm were associated with an increased bTB risk. Inside proactive areas, the number of M. bovis positive badgers initially culled within 1500 m of a farm was the strongest predictor of the risk of a confirmed bTB breakdown. Conclusions/Significance: The use of herd-based models provide insights into how local cattle and badger populations affect the bTB breakdown risks of individual cattle herds in the absence of and in the presence of badger culling. These measures of local bTB risks could be integrated into a risk-based herd testing programme to improve the targeting o
    corecore