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MYELOID NEOPLASIA

Brief report

JAK2V617F homozygosity arises commonly and recurrently in PV and ET, but
PV is characterized by expansion of a dominant homozygous subclone
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Subclones homozygous for JAK2V617F
are more common in polycythemia vera
(PV) than essential thrombocythemia (ET),
but their prevalence and significance re-
main unclear. The JAK2 mutation status
of 6495 BFU-E, grown in low erythropoi-
etin conditions, was determined in
77 patients with PV or ET. Homozygous-
mutant colonies were common in pa-
tients with JAK2V617F-positive PV

and were surprisingly prevalent in
JAK2V617F-positive ET and JAK2 exon
12-mutated PV. Using microsatellite PCR
to map loss-of-heterozygosity breakpoints
within individual colonies, we demon-
strate that recurrent acquisition of
JAK2V617F homozygosity occurs fre-
quently in both PV and ET. PV was distin-
guished from ET by expansion of a domi-
nant homozygous subclone, the selective

advantage of which is likely to reflect
additional genetic or epigenetic lesions.
Our results suggest a model in which
development of a dominant JAK2V617F-
homzygous subclone drives erythrocyto-
sis in many PV patients, with alternative
mechanisms operating in those with small
or undetectable homozygous-mutant
clones. (Blood. 2012;120(13):2704-2707)

Introduction

The JAK2V617F mutation is found in � 95% of patients with
polycythemia vera (PV) and 60% of those with essential thrombo-
cythemia (ET),1-4 but the mechanisms responsible for the different
disease phenotypes remain unclear. Several lines of circumstantial
evidence suggest that increased signaling through mutant JAK2 is
important: (1) A “homozygous” sequence pattern in granulocytes
was identified in � 30% of patients with PV but was rare in ET1-4;
(2) in PV patients, JAK2V617F allele burden correlates with higher
hemoglobin levels and white cell counts but lower platelet counts5,6;
(3) the copy number of mutant JAK2 influences phenotype in
mouse models7,8; and (4) JAK2 exon 12 mutations are reported to
signal more strongly than JAK2V617F and are associated with PV
but not ET.9

Homozygosity for JAK2V617F results from mitotic
recombination,1-4 and homozygous-mutant BFU-E were present in
most patients with PV but not in those with ET.10 This observation
raised the possibilities that patients with PV are more prone to
develop a homozygous subclone or that homozygous-mutant cells
have a selective advantage in patients with PV but not in those with
ET. In either case, it has been widely assumed that homozygous-

mutant cells in a given patient are usually members of a single
clone with a selective advantage and that JAK2V617F homozygos-
ity plays a causal role in PV pathogenesis. However, this model is
complicated by several observations: some patients with PV have
very small homozygous-mutant clones10; 2 individual patients have
been reported to harbor 2 distinct homozygous clones11,12; a defect
in STAT1 phosphorylation has been identified in PV patients13; and
reports of small numbers of ET patients who harbor homozygous-
mutant BFU-E14-16 and of PV patients with none.14,15 We have
therefore systematically assessed the prevalence and clonal relation-
ship of homozygous-mutant BFU-E precursors in patients with
JAK2-mutated PV and ET. In contrast to our previous study,10 we
used low erythropoietin conditions and analyzed a larger number of
colonies, to maximize identification of mutant precursors.

Methods
Patient selection

For patient recruitment sites, see supplemental Methods (available on the
Blood Web site; see the Supplemental Materials link at the top of the online
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article). The study was approved by the Cambridge and Eastern Region
Ethics Committee, patients gave written informed consent, and research
was carried out in accordance with the Declaration of Helsinki. Patients met
British Committee for Standards in Haematology diagnostic criteria for PV
or ET.17,18 Clinical features are shown in supplemental Table 1.

BFU-E assays

PBMCs were plated (2.2-2.5 � 105 cells/mL) in Methocult H4035 (StemCell
Technologies), supplemented with 0.01 or 0.1 U/mL recombinant
erythropoietin-alfa (Janssen-Cilag) and incubated at 37°C for 14-16 days.
BFU-E colonies were identified by morphology and/or cytospins.

Mutation screening

Colony DNA was prepared by isopropanol extraction from RLT lysis buffer
(QIAGEN), or suspension in water. Genotyping for JAK2V617F was
performed by quantitative PCR19 or direct sequencing and for exon
12 mutations by direct sequencing. For TET2 analysis, coding regions and
splice sites were sequenced using granulocyte DNA. Primers are listed in
supplemental Table 2.

Microsatellite analysis

Fluorescence microsatellite PCR used primer sequences from public
databases (supplemental Table 2) and DNA from buccal swabs or colonies.
Analysis was performed using a 3730xl DNA analyser and Peak Scanner
Version 1.0 software (Applied Biosytems).

Results and discussion

We genotyped a total of 6495 BFU-E colonies from 77 patients:
30 with JAK2V617F-positive PV, 29 with JAK2V617F-positive ET,
and 18 with JAK2 exon 12-mutated PV. Homozygous-mutant
precursors were present in all 3 disease groups (Figure 1A-C).
Patients with JAK2V617F-positive PV (Figure 1A) showed the
highest proportions of homozygous-mutant precursors, consistent
with previous reports.10,14,15,20 Homozygosity was undetectable in
6 patients with JAK2V617F-positive PV (20%), despite assessment
of a large number of colonies and the use of low erythropoietin

Figure 1. Proportions of JAK2 genotypes in BFU-Es from patients with JAK2-mutated PV and ET. Each vertical bar represents 1 patient, divided according to the
proportion of wild-type, heterozygous, and homozygous-mutant colonies obtained, with the absolute colony numbers shown above (WT/Het/Hom). BFU-E colonies were
grown under low erythropoietin conditions as indicated. (A) Colony genotypes for 30 patients with JAK2V617F-positive PV (total 2287 colonies; mean 76 colonies per patient).
(B) Colony genotypes for 29 patients with JAK2V617F-positive ET (total 2277 colonies; mean 79 per patient). (C) Colony genotypes for 18 patients with JAK2 exon 12-mutated
PV (total 1931 colonies; mean 107 per patient). (D) Example sequence traces for patients with patients with homozygous JAK2 exon 12 mutations in colonies. (E) Examples of
patients grown on 2 occasions show reproducibility of genotype proportions in JAK2V617F-positive PV, JAK2V617F-positive ET, and JAK2 exon 12-mutated PV (1 and
2 represent independent experiments). In total, 16 patients (5 “heterozygous-only” JAK2V617F-positive PV patients, 4 JAK2V617F-positive PV patients with homozygous and
heterozygous clones, 3 JAK2V617F-positive ET patients with small homozygous clones, and 4 JAK2 exon 12-mutated PV patients with homozygous clones) were assessed in
this way (mean time between experiments, 13 months; range, 2-32 months) and showed reproducibility of proportions of heterozygous and homozygous-mutant colonies.
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conditions that select for JAK2V617F-homozygous precursors.
Acquired TET2 mutations were reported in 3 of 5 such
“heterozygous-only” patients14,21 but were not found in our
6 patients, indicating that many such patients do not carry TET2
mutations.

In JAK2V617F-positive ET and JAK2 exon 12-mutated PV,
JAK2V617F-homozygous colonies were identified in a surprisingly
large percentage of patients (52% and 44%, respectively). Homozy-
gous clone sizes were small; and in exon 12-mutated PV, homozy-
gosity was associated with both K539L-type and E543del-type
mutations (Figure 1D). The relative proportions of heterozygous
and homozygous-mutant colonies were stable over time in
16 patients tested on 2 separate occasions (Figure 1E; and data not
shown). Homozygous-mutant BFU-E are therefore a persistent
feature in many patients with JAK2V617F-positive PV, JAK2V617F-
positive ET, and JAK2 exon 12-mutated PV, and are more frequent
than previously recognized in the latter 2 disorders.5,20,22,23 Compari-
son of patients with and without detectable homozygosity did not
reveal any differences in blood counts at diagnosis, presence of
palpable splenomegaly, or thrombotic history (Mann-Whitney
U test/Fisher exact tests, P � .05 for each disease subgroup).

To determine whether JAK2V617F-homozygous colonies were
part of a single clone or reflected recurrent acquisition of loss of
heterozygosity (LOH), breakpoints for chromosome 9p LOH were
mapped using fluorescence microsatellite PCR in 576 homozygous-
mutant colonies from 10 patients (8 PV and 2 ET). Results for 1 PV

patient and 1 ET patient are shown in Figure 2A and B, with the
others summarized in Figure 2C. At least 2 distinct homozygous
subclones were identified in 5 of 8 PV patients and both ET patients,
indicating that independent homozygous-mutant clones arise fre-
quently in both PV and ET. Importantly, the resolution of break-
point mapping was limited (2.3-14.2 MB), so the number of
distinct subclones may be an underestimate. The high prevalence of
homozygous-mutant clones may reflect a role for JAK2V617F in
homologous recombination24 and/or inappropriate survival of cells
after DNA damage.25 There was no obvious relationship between
the presence of multiple homozygous-mutant subclones and patient
age, disease duration, or therapy (supplemental Table 3).
Homozygous-mutant colonies did not arise from short-lived progeni-
tors because distinct subclones persist over time. Patient PV24 had
2 subclones whose relative proportions remained unchanged over
10 months (supplemental Figure 1), indicating that they arose from
early stem/progenitor cells.

Importantly, patients with PV and ET differed in that the former
harbored a major homozygous-mutant clone that was 8-85 times
the size of minor subclones in the same patient (Figure 2A-C). This
observation demonstrates that the large numbers of homozygous-
mutant colonies present in most PV patients do not reflect
accumulation of numerous independent subclones but rather the
expansion of 1 dominant clone. Given the circumstantial evidence
that JAK2V617F homozygosity enhances erythropoiesis, it seems
probable that the dominant clone present in many PV patients is

Figure 2. Microsatellite mapping of 9p LOH in JAK2V617F-homozygous colonies. (A) Microsatellite mapping of 68 JAK2V617F-homozygous colonies from patient
PV26 (patient codes are the same as in Figure 1). The panel of microsatellite markers on chromosome 9 is shown on the left (distances are to scale between the telomere and
D9S2148), from which informative markers were selected for each patient. Three patterns of microsatellite markers were observed in colonies from this patient, indicating
3 distinct LOH breakpoints. Each subclone is represented by a vertical line denoted A (60 colonies), B (4 colonies), or C (4 colonies), with markers showing heterozygosity in
green and those showing LOH in red. Example traces from fluorescence microsatellite PCR are shown for 2 markers (D9S925 and D9S1817) for the 3 subclones (right), with
the position of alleles shown by arrowheads. (B) Microsatellite mapping of 5 JAK2V617F-homozygous colonies from patient ET29. Two patterns of microsatellite markers were
observed; example traces are shown for 2 markers (D9S43 and D9S1817) on the right. (C) Microsatellite mapping of JAK2V617F-homozygous colonies in 8 other patients. The
panel of markers is the same as in panel A. Numbers of colonies corresponding to each pattern are shown above.
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causally related to the development of erythrocytosis, with other
mechanisms operating in the minority of patients with small or
undetectable homozygous-mutant clones.

There are at least 2 explanations for the development of a
dominant homozygous-mutant clone in PV patients. First, the
dominant subclone might derive from a preexisting minor subclone
after a second more centromeric mitotic recombination event, with
the selective advantage reflecting extension of the region of LOH.
However, there was no region of LOH that was common to the
dominant subclones and absent from minor subclones (Figure
2A-C). Moreover, in some patients, the breakpoint in the dominant
subclone was clearly telomeric to that of a minor subclone (eg,
PV24, PV26). We therefore favor the alternative explanation that
minor and dominant subclones arose independently, with the
selective advantage of the latter reflecting acquisition of additional
genetic or epigenetic changes.
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