66 research outputs found

    Live SIV vaccine correlate of protection: immune complex-inhibitory Fc receptor interactions that reduce target cell availability

    Get PDF
    Principles to guide design of an effective vaccine against HIV are greatly needed, particularly to protect women in the pandemic’s epicentre in Africa. We have been seeking these principles by identifying correlates of the robust protection associated with SIVmac239Δnef vaccination in the SIV-rhesus macaque animal model of HIV-1 transmission to women. We have identified one correlate of SIVmac239Δnef protection against vaginal challenge as a resident mucosal system for SIV-gp41 trimer antibody production and neonatal Fc receptor (FcRn)-mediated concentration of these antibodies on the path of virus entry to inhibit establishment of infected founder populations at the portal of entry. Here we identify as a second protection correlate, blocking CD4+ T cell recruitment to inhibit local expansion of infected founder populations. Virus-specific immune complex interactions with the inhibitory FcγRIIb receptor in the epithelium lining the cervix initiate expression of genes that block recruitment of target cells to fuel local expansion. Immune complex-FcγRIIb receptor interactions at mucosal frontlines to dampen the innate immune response to vaginal challenge could be a potentially general mechanism for the mucosal immune system to sense and modulate the response to a previously encountered pathogen. Designing vaccines to provide protection without eliciting these transmission-promoting innate responses could contribute to developing an effective HIV-1 vaccine

    Live SIV vaccine correlate of protection: immune complex-inhibitory Fc receptor interactions that reduce target cell availability

    Get PDF
    Principles to guide design of an effective vaccine against HIV are greatly needed, particularly to protect women in the pandemic’s epicentre in Africa. We have been seeking these principles by identifying correlates of the robust protection associated with SIVmac239Δnef vaccination in the SIV-rhesus macaque animal model of HIV-1 transmission to women. We have identified one correlate of SIVmac239Δnef protection against vaginal challenge as a resident mucosal system for SIV-gp41 trimer antibody production and neonatal Fc receptor (FcRn)-mediated concentration of these antibodies on the path of virus entry to inhibit establishment of infected founder populations at the portal of entry. Here we identify as a second protection correlate, blocking CD4+ T cell recruitment to inhibit local expansion of infected founder populations. Virus-specific immune complex interactions with the inhibitory FcγRIIb receptor in the epithelium lining the cervix initiate expression of genes that block recruitment of target cells to fuel local expansion. Immune complex-FcγRIIb receptor interactions at mucosal frontlines to dampen the innate immune response to vaginal challenge could be a potentially general mechanism for the mucosal immune system to sense and modulate the response to a previously encountered pathogen. Designing vaccines to provide protection without eliciting these transmission-promoting innate responses could contribute to developing an effective HIV-1 vaccine

    Glycerol monolaurate prevents mucosal SIV transmission

    Get PDF
    Although there has been great progress in treating human immunodeficiency virus 1 (HIV-1) infection1, preventing transmission has thus far proven an elusive goal. Indeed, recent trials of a candidate vaccine and microbicide have been disappointing, both for want of efficacy and concerns about increased rates of transmission2–4. Nonetheless, studies of vaginal transmission in the simian immunodeficiency virus (SIV)–rhesus macaque (Macacca mulatta) model point to opportunities at the earliest stages of infection in which a vaccine or microbicide might be protective, by limiting the expansion of infected founder populations at the portal of entry5,6. Here we show in this SIV–macaque model, that an outside-in endocervical mucosal signalling system, involving MIP-3α (also known as CCL20), plasmacytoid dendritic cells and CCR5+ cell-attracting chemokines produced by these cells, in combination with the innate immune and inflammatory responses to infection in both cervix and vagina, recruits CD4+ T cells to fuel this obligate expansion. We then show that glycerol monolaurate—a widely used antimicrobial compound7with inhibitory activity against the production of MIP-3α and other proinflammatory cytokines8—can inhibit mucosal signalling and the innate and inflammatory response to HIV-1 and SIV in vitro, and in vivo it can protect rhesus macaques from acute infection despite repeated intra-vaginal exposure to high doses of SIV. This new approach, plausibly linked to interfering with innate host responses that recruit the target cells necessary to establish systemic infection, opens a promising new avenue for the development of effective interventions to blockHIV-1 mucosal transmission

    Apoptosis resistance downstream of eIF4E: posttranscriptional activation of an anti-apoptotic transcript carrying a consensus hairpin structure

    Get PDF
    Aberrant activation of the translation initiation machinery is a common property of malignant cells, and is essential for breast carcinoma cells to manifest a malignant phenotype. How does sustained activation of the rate limiting step in protein synthesis so fundamentally alter a cell? In this report, we test the post transcriptional operon theory as a possible mechanism, employing a model system in which apoptosis resistance is conferred on NIH 3T3 cells by ectopic expression of eIF4E. We show (i) there is a set of 255 transcripts that manifest an increase in translational efficiency during eIF4E-mediated escape from apoptosis; (ii) there is a novel prototype 55 nt RNA consensus hairpin structure that is overrepresented in the 5′-untranslated region of translationally activated transcripts; (iii) the identified consensus hairpin structure is sufficient to target a reporter mRNA for translational activation under pro-apoptotic stress, but only when eIF4E is deregulated; and (iv) that osteopontin, one of the translationally activated transcripts harboring the identified consensus hairpin structure functions as one mediator of the apoptosis resistance seen in our model. Our findings offer genome-wide insights into the mechanism of eIF4E-mediated apoptosis resistance and provide a paradigm for the systematic study of posttranscriptional control in normal biology and disease

    Glycerol monolaurate prevents mucosal SIV transmission

    Get PDF
    Although there has been great progress in treating human immunodeficiency virus 1 (HIV-1) infection1, preventing transmission has thus far proven an elusive goal. Indeed, recent trials of a candidate vaccine and microbicide have been disappointing, both for want of efficacy and concerns about increased rates of transmission2–4. Nonetheless, studies of vaginal transmission in the simian immunodeficiency virus (SIV)–rhesus macaque (Macacca mulatta) model point to opportunities at the earliest stages of infection in which a vaccine or microbicide might be protective, by limiting the expansion of infected founder populations at the portal of entry5,6. Here we show in this SIV–macaque model, that an outside-in endocervical mucosal signalling system, involving MIP-3α (also known as CCL20), plasmacytoid dendritic cells and CCR5+ cell-attracting chemokines produced by these cells, in combination with the innate immune and inflammatory responses to infection in both cervix and vagina, recruits CD4+ T cells to fuel this obligate expansion. We then show that glycerol monolaurate—a widely used antimicrobial compound7with inhibitory activity against the production of MIP-3α and other proinflammatory cytokines8—can inhibit mucosal signalling and the innate and inflammatory response to HIV-1 and SIV in vitro, and in vivo it can protect rhesus macaques from acute infection despite repeated intra-vaginal exposure to high doses of SIV. This new approach, plausibly linked to interfering with innate host responses that recruit the target cells necessary to establish systemic infection, opens a promising new avenue for the development of effective interventions to blockHIV-1 mucosal transmission

    Lymphoid Tissue Damage in HIV-1 Infection Depletes Naïve T Cells and Limits T Cell Reconstitution after Antiretroviral Therapy

    Get PDF
    Highly active antiretroviral therapy (HAART) can suppress HIV-1 replication and normalize the chronic immune activation associated with infection, but restoration of naïve CD4+ T cell populations is slow and usually incomplete for reasons that have yet to be determined. We tested the hypothesis that damage to the lymphoid tissue (LT) fibroblastic reticular cell (FRC) network contributes to naïve T cell loss in HIV-1 infection by restricting access to critical factors required for T cell survival. We show that collagen deposition and progressive loss of the FRC network in LTs prior to treatment restrict both access to and a major source of the survival factor interleukin-7 (IL-7). As a consequence, apoptosis within naïve T cell populations increases significantly, resulting in progressive depletion of both naïve CD4+ and CD8+ T cell populations. We further show that the extent of loss of the FRC network and collagen deposition predict the extent of restoration of the naïve T cell population after 6 month of HAART, and that restoration of FRC networks correlates with the stage of disease at which the therapy is initiated. Because restoration of the FRC network and reconstitution of naïve T cell populations are only optimal when therapy is initiated in the early/acute stage of infection, our findings strongly suggest that HAART should be initiated as soon as possible. Moreover, our findings also point to the potential use of adjunctive anti-fibrotic therapies to avert or moderate the pathological consequences of LT fibrosis, thereby improving immune reconstitution

    Efficacy and safety of two neutralising monoclonal antibody therapies, sotrovimab and BRII-196 plus BRII-198, for adults hospitalised with COVID-19 (TICO): a randomised controlled trial

    Get PDF
    BACKGROUND: We aimed to assess the efficacy and safety of two neutralising monoclonal antibody therapies (sotrovimab [Vir Biotechnology and GlaxoSmithKline] and BRII-196 plus BRII-198 [Brii Biosciences]) for adults admitted to hospital for COVID-19 (hereafter referred to as hospitalised) with COVID-19. METHODS: In this multinational, double-blind, randomised, placebo-controlled, clinical trial (Therapeutics for Inpatients with COVID-19 [TICO]), adults (aged ≥18 years) hospitalised with COVID-19 at 43 hospitals in the USA, Denmark, Switzerland, and Poland were recruited. Patients were eligible if they had laboratory-confirmed SARS-CoV-2 infection and COVID-19 symptoms for up to 12 days. Using a web-based application, participants were randomly assigned (2:1:2:1), stratified by trial site pharmacy, to sotrovimab 500 mg, matching placebo for sotrovimab, BRII-196 1000 mg plus BRII-198 1000 mg, or matching placebo for BRII-196 plus BRII-198, in addition to standard of care. Each study product was administered as a single dose given intravenously over 60 min. The concurrent placebo groups were pooled for analyses. The primary outcome was time to sustained clinical recovery, defined as discharge from the hospital to home and remaining at home for 14 consecutive days, up to day 90 after randomisation. Interim futility analyses were based on two seven-category ordinal outcome scales on day 5 that measured pulmonary status and extrapulmonary complications of COVID-19. The safety outcome was a composite of death, serious adverse events, incident organ failure, and serious coinfection up to day 90 after randomisation. Efficacy and safety outcomes were assessed in the modified intention-to-treat population, defined as all patients randomly assigned to treatment who started the study infusion. This study is registered with ClinicalTrials.gov, NCT04501978. FINDINGS: Between Dec 16, 2020, and March 1, 2021, 546 patients were enrolled and randomly assigned to sotrovimab (n=184), BRII-196 plus BRII-198 (n=183), or placebo (n=179), of whom 536 received part or all of their assigned study drug (sotrovimab n=182, BRII-196 plus BRII-198 n=176, or placebo n=178; median age of 60 years [IQR 50-72], 228 [43%] patients were female and 308 [57%] were male). At this point, enrolment was halted on the basis of the interim futility analysis. At day 5, neither the sotrovimab group nor the BRII-196 plus BRII-198 group had significantly higher odds of more favourable outcomes than the placebo group on either the pulmonary scale (adjusted odds ratio sotrovimab 1·07 [95% CI 0·74-1·56]; BRII-196 plus BRII-198 0·98 [95% CI 0·67-1·43]) or the pulmonary-plus complications scale (sotrovimab 1·08 [0·74-1·58]; BRII-196 plus BRII-198 1·00 [0·68-1·46]). By day 90, sustained clinical recovery was seen in 151 (85%) patients in the placebo group compared with 160 (88%) in the sotrovimab group (adjusted rate ratio 1·12 [95% CI 0·91-1·37]) and 155 (88%) in the BRII-196 plus BRII-198 group (1·08 [0·88-1·32]). The composite safety outcome up to day 90 was met by 48 (27%) patients in the placebo group, 42 (23%) in the sotrovimab group, and 45 (26%) in the BRII-196 plus BRII-198 group. 13 (7%) patients in the placebo group, 14 (8%) in the sotrovimab group, and 15 (9%) in the BRII-196 plus BRII-198 group died up to day 90. INTERPRETATION: Neither sotrovimab nor BRII-196 plus BRII-198 showed efficacy for improving clinical outcomes among adults hospitalised with COVID-19. FUNDING: US National Institutes of Health and Operation Warp Speed

    Host Genes Associated with HIV-1 Replication in Lymphatic Tissue

    Get PDF
    Much effort has been spent recently in identifying host factors required for HIV-1 to effectively replicate in cultured human cells. However, much less is known about the genetic factors in vivo that impact viral replication in lymphatic tissue, the primary anatomical site of virus-host interactions where the bulk of viral replication and pathogenesis occur. In order to identify genetic determinants in lymphatic tissue that critically affect HIV-1 replication, we used microarrays to transcriptionally profile and identify host genes expressed in inguinal lymph nodes that were associated determinants of viral load. Strikingly, ~95% of the transcripts (558) in this data set (592 transcripts total) were negatively associated with HIV-1 replication. Genes in this subset (1) inhibit cellular activation/ proliferation (ex.: TCFL5, SOCS5 and SCOS7, KLF10), (2) promote heterochromatin formation (ex.: HIC2, CREBZF, ZNF148/ZBP-89), (3) increase collagen synthesis (ex.: PLOD2, POSTN, CRTAP), and (4) reduce cellular transcription and translation. Potential anti-HIV-1 restriction factors were also identified (ex.: NR3C1, HNRNPU, PACT). Only ~5% of the transcripts (34) were positively associated with HIV-1 replication. Paradoxically, nearly all these genes function in innate and adaptive immunity, particularly highlighting a heightened interferon system. We conclude that this conventional host response cannot contain HIV-1 replication and, in fact, could well contribute to increased replication through immune activation. More importantly, genes that have a negative association with virus replication point to target cell availability and potentially new viral restriction factors as principal determinants of viral load
    • …
    corecore