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LETTERS

Glycerol monolaurate prevents mucosal
SIV transmission
Qingsheng Li1, Jacob D. Estes2, Patrick M. Schlievert1, Lijie Duan1, Amanda J. Brosnahan1, Peter J. Southern1,
Cavan S. Reilly3, Marnie L. Peterson4, Nancy Schultz-Darken5, Kevin G. Brunner5, Karla R. Nephew5,
Stefan Pambuccian6, Jeffrey D. Lifson2, John V. Carlis7 & Ashley T. Haase1

Although there has been great progress in treating human
immunodeficiency virus 1 (HIV-1) infection1, preventing trans-
mission has thus far proven an elusive goal. Indeed, recent trials of
a candidate vaccine and microbicide have been disappointing,
both for want of efficacy and concerns about increased rates of
transmission2–4. Nonetheless, studies of vaginal transmission in
the simian immunodeficiency virus (SIV)–rhesus macaque
(Macacca mulatta) model point to opportunities at the earliest
stages of infection in which a vaccine or microbicide might be
protective, by limiting the expansion of infected founder popula-
tions at the portal of entry5,6. Here we show in this SIV–macaque
model, that an outside-in endocervical mucosal signalling system,
involving MIP-3a (also known as CCL20), plasmacytoid dendritic
cells and CCR51 cell-attracting chemokines produced by these
cells, in combination with the innate immune and inflammatory
responses to infection in both cervix and vagina, recruits CD41 T
cells to fuel this obligate expansion. We then show that glycerol
monolaurate—a widely used antimicrobial compound7 with
inhibitory activity against the production of MIP-3a and other
proinflammatory cytokines8—can inhibit mucosal signalling and
the innate and inflammatory response to HIV-1 and SIV in vitro,
and in vivo it can protect rhesus macaques from acute infection
despite repeated intra-vaginal exposure to high doses of SIV. This
new approach, plausibly linked to interfering with innate host
responses that recruit the target cells necessary to establish
systemic infection, opens a promising new avenue for the develop-
ment of effective interventions to block HIV-1 mucosal transmission.

To understand how SIV infection in a small founder population of
cells at the portal of entry transitions in less than two weeks to systemic
infection, with massive levels of viral replication and depletion of gut
CD41 T cells5,6,9,10, we analysed the anatomical and temporal expan-
sion of these small founder cell populations. We created atlases of the
numbers and locations of SIV RNA1 cells detected by in situ hybridiz-
ation in cervical and vaginal tissues from animals at 4–10 days post-
inoculation (d.p.i.), with the rationale that by locating sites that
initially had the largest numbers of infected cells, and then determin-
ing how infection expanded and spread from these infected founder
populations, we would gain insight into the sites of virus entry and
subsequent events underlying the expansion on which systemic infec-
tion depends.

In screening 20–40 sections of cervical and vaginal tissues from
each animal in this 4–10 d.p.i. time frame, we identified sections with

SIV RNA1 cells in nine animals, and in each animal we found one
predominant focus of infected cells in the endocervix. There were
further clusters of infected cells in the transformation zone (the junc-
tion of ecto- and endocervix) adjoining the endocervical and vaginal
foci in three animals. We illustrate at the bottom of Fig. 1a the
thumbnail representative images of the montages created from the
captured images of sections from these animals, and in Fig. 1b a small
cluster of SIV RNA1 cells found at 4 d.p.i. only in endocervix, and
then in 1 out of 40 sections in one isolated area, as reported previ-
ously6. We mapped onto a two-dimensional grid the positions of cell
centres (centroids) of SIV RNA1 cells in this focus (Fig. 1c), and
predominant foci at 6–10 d.p.i. that were again found in endocervix.

These atlases showed that infection expands by accretion of new
infections around an initial cluster of infected cells in endocervix,
rather than by diffuse spread of infection in the submucosa, and that
the successive influxes of new CD41 T target cells in inflammatory
infiltrates fuel local expansion. The marked growth of SIV RNA1

clusters is evident from comparisons of the map dimensions from
4 to 10 d.p.i. (Fig. 1d, e and Supplementary Fig. 1a–c), and from the
growth of clusters amid inflammatory cell infiltrates at 6 d.p.i.
(Fig. 1f), in which SIV RNA1 cells are located among dark staining
nuclei of cells in inflammatory infiltrates. These focal infiltrates con-
tained increased numbers of CD41 T cells compared to uninfected
animals or at 1 d.p.i., and were apparent at 4 d.p.i. (Fig. 2a–c and
Supplementary Fig. 2). Virtually all of the infected cells were
CD31 CD41 T cells (Fig. 2d).

The isolated focus at 4 d.p.i. seemed unlikely by itself to have
induced such an extensive influx of CD41 T cells, and indeed we
found evidence implicating endocervical epithelium and plasmacy-
toid dendritic cells (pDCs) in the initial recruitment of target cells to
the endocervical submucosa. We had previously stained these tissues
for a pDC marker11, CD123 (also known as IL3RA), to investigate the
possible role of pDCs in a ‘premature’ T-regulatory response to
infection12, and now noted areas with CD1231 pDCs aligned just
beneath the endocervical epithelium. These subepithelial pDC col-
lections were observed at 1 d.p.i., and were not seen in the same
numbers or location in uninfected animals (Fig. 3a–c). The pDCs
also stained positive for the specific marker BDCA2 (also known as
CLEC4C)11 (data not shown), were strongly positive for interferons a
(Fig. 3d) and b (data not shown), and expressed the CCR51 cell-
attracting chemokines MIP-1a (CCL3) and MIP-1b (CCL4) (Fig. 3e),
which could thus serve as one mechanism to quickly recruit CD41 T
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cells to the endocervix. We also found increased expression at 1 and
3 d.p.i. of cervical MIP-3a, the principal chemokine known to induce
pDC migration and T cells into peripheral issues13, in microarray
comparisons of uninfected and infected animals (Supplementary
Table 1), and increased MIP-3a staining in endocervical epithelium
(Fig. 3f). These findings demonstrate an outside-in signalling path-
way triggered by exposure to the viral inoculum that recruits pDCs
and T cells to create an environment rich in target cells at the sites of
initial infection.

This initial influx of CD41 T cells was followed by a secondary
inflammatory process, probably driven by RANTES and other
chemokine-producing cells within inflammatory infiltrates (Supple-
mentary Fig. 3), in which SIV RNA1 cells were clearly concentrated at
10 d.p.i. (Supplementary Fig. 1d). Unlike endocervix, we saw no
evidence for a signalling pathway capable of recruiting additional
CD41 T cells in the foci of SIV RNA1 cells in the transformation zone
and vagina in three animals. However, an inflammatory response
provided susceptible target cells for expansion of the infection at these
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Figure 1 | Mapping early expansion of infection in endocervix. SIV RNA1

cells appear black in transmitted light, green in reflected light and in maps.
a–c, The arrow from the thumbnail montage images (bottom of a) of cervix
and vagina (4–10 d.p.i.) points to an enlarged image and map of a single
focus (box) of SIV RNA1 cells in endocervix (4 d.p.i.). Anticlockwise-rotated

image of focus (box) (b) and map of x, y coordinates (mm) (c) of cell
centroids to the right. d, e, Endocervical focus (d) and map (e) (7 d.p.i.) are
shown. f, Endocervical focus (6 d.p.i.) SIV RNA1 cells (green) are
concentrated in an inflammatory infiltrate (cells with dark staining nuclei).
Original magnification for all images, 310.
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sites as well, because infected cells (Supplementary Fig. 4a) were
generally in areas of inflammation containing IL-81 cells, with asso-
ciated epithelial thinning and disruption (Supplementary Fig. 4b, c).
Thus, inflammation with increases in susceptible target populations is
the common denominator across sites.

The importance of the innate immune and inflammatory response in
providing newtargetcells for localexpansionand systemicdissemination

suggested that inhibiting this immunoinflammatory process might
prevent transmission and systemic infection. We focused on glycerol
monolaurate (GML) because of the compound’s documented
relevant activities in inhibiting immune activation and chemokine
and cytokine production by human vaginal epithelial cell cultures
(HVECs) on exposure to staphylococcal toxins8,14. We showed that
GML inhibited the production of MIP-3a and IL-8 (as a general
marker of inflammation and increased susceptibility to HIV-1 infec-
tion in female genital tissues15) by HVECs in response to the more
relevant exposure to HIV-1 (Fig. 4a, b). MIP-3a and IL-8 levels were
also reduced in cervical and vaginal fluids collected in a safety study16

from rhesus macaques treated intra-vaginally with 5% GML daily for
6 months (Fig. 4c, d).

Encouraged by these results, we tested the potential efficacy of
GML against repeated high dose intra-vaginal SIV challenges in ten
animals, in an extension of the GML safety study16. We first evaluated
its efficacy in a pilot study in which we could examine cervical and
vaginal and lymphatic tissues obtained at the expected peak of viral
replication at 14 d.p.i.6. Two animals from the safety study that were
treated daily with 5% GML in K-Y warming gel, and two animals that
received K-Y warming gel alone as a vehicle control, were challenged
intra-vaginally 1 h after compound introduction with 105 50%
tissue-culture infective dose units (TCID50) of SIV. Four hours later
they were again given either GML or K-Y warming gel, and
challenged after 1 h with an equivalent dose of SIV, and then con-
tinued on daily doses of either GML or K-Y warming gel.

Both of the GML-treated animals were completely protected from
this high dose SIV challenge. Using in situ hybridization there was no
evidence for SIV RNA1 cells in cervical, vaginal (Supplementary
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Figure 2 | Influx and infection of CD41 T cells in cervix in early infection.
a–c, Sections stained with anti-CD4 antibody. Note the relative paucity of
CD41 cells in an SIV2 (negative animal) (a), or an SIV-inoculated animal
1 d.p.i. (b), compared to increased numbers of CD41 cells seen in an infected
animal at 4 d.p.i. (c). d, SIV RNA1 cells in infiltrates are CD31 T cells.
Encircled SIV RNA1 cells (overlying black silver grains) are stained brown
with anti-CD3. Original magnification, 310 (a–c) and 320 (d).
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Figure 3 | pDCs, cytokines and chemokines associated with endocervical
epithelium after exposure to SIV. a, Uninfected animal, original
magnification 310. b, c, Rapid accumulation of pDCs beneath endocervical
epithelium at 1 d.p.i. shown at 310 (b) and 340 (c) original magnifications.
pDCs stained brown with anti-CD123 antibody. Arrow in c points to the
location of pDCs beneath the epithelium. d, e, Arrows point to subepithelial
pDCs stained red with anti-interferon-a antibody at 1 d.p.i. (d, 320
magnification) or with anti-MIP-1b antibody (e, 310 magnification).
f, Arrow points to MIP-3a1 endocervical epithelium (red) at 1 d.p.i. Original
magnification in f, 310.
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Fig. 5a, b) or lymphatic tissues (data not shown), and no evidence of
inflammation (Supplementary Fig. 5a, b) or virus detectable in plasma
(Fig. 5a). In contrast, in one of the two controls, SIV RNA1 cells were
detected in endocervical, vaginal (Supplementary Fig. 5c, d) and
lymphatic tissues (data not shown) and there was an influx of inflam-
matory cells associated with infection in the endocervix and vagina
(Supplementary Fig. 5c, d), and high levels of virus in plasma (Fig. 5a)
were all readily apparent. We then challenged three other GML-
treated animals and three K-Y warming gel controls, repeating the
challenges 4 weeks later if the animals showed no evidence of systemic
infection (plasma levels of ,20 copies of SIV RNA per ml). Again,
GML prevented acute systemic infection after four exposures to this
high dose vaginal challenge, whereas all three control animals became
infected (Fig. 5b).

In seeking interventions to prevent vaginal transmission in a SIV–
macaque model, we have focused on the critical window of oppor-
tunity at the earliest stages of infection when infected founder cell
populations are small, and the virus must overcome the limited
availability of susceptible target cells to sustain and sufficiently
expand the initially infected founder cell populations to disseminate
and establish a self-propagating infection in secondary lymphoid
organs5. Here we show that SIV exploits the innate immune and
inflammatory response to overcome this inherent limitation in the
availability of target cells in the endocervix—the predominant site of
the initial infected cell clusters. We document the growth of clusters
by accretion of new infections in influxes of CD41 T cell targets, and
provide evidence plausibly linking the first influx to an outside-in
mucosal signalling pathway in which the exposure of endocervical
epithelium to the viral inoculum increases the expression of MIP3-a
to recruit pDCs, which in turn produce MIP-1a and MIP-1b to
recruit CCR51 targets.

The discovery reported here of in vivo induction of MIP3-a in
endocervical epithelium, together with our in vitro results and the
previous report of the induction of MIP3-a in uterine epithelial
cultures by microbial-related stimuli17, point to outside-in signalling
as a general feature of mucosal epithelium of the upper female genital
tract. This signalling pathway and the production of interferons and
virus-inhibiting chemokines by pDCs, support the concept that the
mucosal lining of the upper female genital tract is truly the front line
of the innate mucosal immune system18. Although our conclusion
that innate defences there are actually critical to the establishment
and spread of infection may thus at first seem counterintuitive, it is in
keeping with the previous report of possibly enhanced vaginal trans-
mission with agonists used to stimulate innate immunity19, and with
the concept advanced here: although interferons and anti-viral che-
mokines produced locally by pDCs may protect themselves and

contribute to limiting infection initially, on balance, SIV’s greater
immediate need is for target cells, which is served by the inflamma-
tory component of the innate immune response.
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Figure 4 | GML inhibits HIV-1 induced
expression of MIP-3a and IL-8 in HVECs and in
cervical and vaginal fluids. a, b, R5 isolate of
HIV-1 added to HVECs in the amounts
indicated 6 GML. MIP-3a (a) and IL-8 (b) release
from HVECs was measured and expressed as the
difference from control. c, d, At the end of a
6-month safety study, cervical and vaginal fluids
were collected with a swab that reproducibly
adsorbed 0.1 ml of fluid from animals that
received GML or K-Y warming gel in the a.m. and
p.m. of two successive days. MIP-3a (c) and IL-8
(d) were measured by ELISA. Bars indicate s.e.m.
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TCID50 of SIV. Colours indicate individual animals. SIV RNA in plasma was
measured to peak viremia, 14 d.p.i. b, Three animals treated with GML and
three given K-Y warming gel were challenged as described in a. The animals
that were not infected were treated and challenged again 4 weeks later, shown
at the right.
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We show that GML can break this vicious cycle of signalling and
inflammatory responses in the cervix and vagina to prevent acute SIV
infection in five out of five animals with repeated intra-vaginal
challenges of 105 TCID50 of SIV, and particularly notably, in three
out of three animals challenged four times with this high dose. This
result represents a highly encouraging new lead in the search for an
effective microbicide to prevent HIV-1 transmission that meets the
criteria of safety, affordability and efficacy20. GML is a US Federal
Drug Administration (FDA) generally recognized as safe (GRAS)7

agent that has been applied daily intra-vaginally in K-Y warming
gel, an FDA-approved vehicle for human vaginal use, for 6 months
in rhesus macaques with no evidence of pathological effects or altera-
tion of resident Lactobacilli16. GML is inexpensive (each dose used
here cost less than 1 cent), and is efficacious in preventing acute
systemic infection. Certainly, longer-term and well-powered studies
with larger numbers of animals will be needed to definitively establish
efficacy, and efficacy against occult infections, reportedly manifest as
long as a year after repeated low-dose intravaginal inoculations21, and
for which we now have preliminary evidence in this repeated high-
dose model in one of the three animals with previously undetectable
virus. Even conservative estimates of efficacy $60% (see Methods)
extrapolate, according to mathematical models, to 2.5 million
averted HIV infections over a 3-year period22, thus providing
rationale and motivation for human trials of GML alone as a micro-
bicide, and/or combined with other agents that specifically inhibit
HIV-1 replication23. More generally, other microbes may exploit
mucosal signalling and the innate inflammatory response to establish
infection, so that GML may be the first example of a class of com-
pounds that provide protection by interfering with these responses.

METHODS SUMMARY
Animals, inoculation of SIV, GML and K-Y warming gel. Adult female rhesus

macaque monkeys (Macacca mulatta), housed in accordance with the regula-

tions of the American Association of Accreditation of Laboratory Animal Care

standards, were inoculated twice intra-vaginally with 1 ml of 105 TCID50 per ml

SIVmac 251 (ref. 6). One-ml of K-Y warming gel 6 5% GML was administered

atraumatically into the vagina daily and before viral challenges.

SIV RNA in plasma. SIV RNA copy equivalents per ml (Eq ml21) in plasma was

determined using a quantitative PCR with reverse transcription (qRT–PCR) assay24.
In situ hybridization and immunohistochemistry. Blood, cervical, vaginal and

lymphoid tissues were collected from euthanized animals, fixed and then embedded

in paraffin. In situ hybridization combined with immunohistochemical staining

and immunochemistry were performed as described9,12.

Digital atlases. Images of fields with SIV RNA1 cells were acquired, merged

(Photoshop 7.0 automerge), and, after using Photoshop Action procedures to

delineate SIV RNA1 cells, centroid x, y coordinates were assigned using

MetaMorph software, and the coordinates were plotted with Excel.

Induction and measurement of MIP-3a and IL-8. HIV-1 6 GML was added to

HVECs cultured as described25. Chemokines in the supernatants were measured

by ELISA25.

Microarray analysis. Gene expression profiles in cervix before and after intra-

vaginal SIV inoculation were analysed with the Affymetrix GeneChip Rhesus

Macaque Genome Array as described26.

Statistical methods. The negative binomial distribution was used to model

repeated challenges. The model assumes that outcomes for distinct animals

are independent, and that the probability of being infected differs between the

two groups. The use of maximum likelihood or Bayesian methods (which don’t
assume the sample size is large) both indicate that the efficacy of GML against

transmission is at least 65%, in which the posterior probability that GML is more

likely to prevent infection than K-Y warming gel is 0.98, and the P-value that the

probability differs between groups is 0.04.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.

Received 20 November 2008; accepted 20 January 2009.
Published online 4 March 2009.
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METHODS
Animals. Adult female rhesus macaque monkeys (Macacca mulatta) used in the

studies were housed at the California and Wisconsin National Primate Centers in

accordance with the regulations of the American Association of Accreditation of

Laboratory Animal Care and the standards of the Association for Assessment and

Accreditation of Laboratory Animal Care International; all protocols and procedures

were approved by the relevant Institutional Animal Care and Use Committee. All

animals were negative for antibodies to HIV type 2, SIV, type D retrovirus, and

simian T-cell lymphotropic virus type 1.

Intra-vaginal inoculation of SIV, GML and K-Y warming gel. Monkeys were

inoculated intra-vaginally twice in a single day, with a 4-h interval between

inoculations, with 1 ml of a 2004 virus stock from C. Miller of 105 TCID50 per

ml SIVmac 251. For inoculation, each animal was anesthetized with an intra-

muscular injection of a combination of ketamine hydrochloride (Parke-Davis)

(up to 7 mg per kg) and medetomidine (up to 5 mg per kg). More ketamine when

needed was given intravenously (up to 5 mg per kg). The animal was placed in a

sternal position with her posterior elevated approximately 60 degrees from hori-

zontal, and a 1-ml syringe without a needle was inserted atraumatically into the

vagina to deliver the inoculum. Animals thereafter remained in the sternal posi-

tion for between 30 and 40 min. For 5% GML and vehicle control gel dosing, as

well as the collection of vaginal swabs, animals were transferred to a table-top

restraint device to administer either 1 ml of vehicle control K-Y warming gel or

1 ml of gel containing 50 mg solubilized GML using a 1-ml syringe without a

needle inserted atraumatically into the vagina, as described above.

GML formulation. GML (monomuls 90-L 12, Cognis Corporation Care

Chemicals) was dissolved in K-Y warming gel (5 g per 100 ml) at the Fairview

Compounding Pharmacy.

Detection of SIV RNA in plasma. SIV viral RNA (vRNA) genomic copy equiva-

lents in EDTA-anti-coagulated plasma was determined using a qRT–PCR pro-

cedure modified from an assay described previously24. In brief, vRNA was

isolated from plasma using a GuSCN-based procedure as described. qRT–PCR

was performed using the SuperScript III Platinum(R) One-Step Quantitative

RT–PCR System (Invitrogen). Reactions were run on a Roche LightCycler 2.0

instrument and software. vRNA copy number was determined using LightCycler

4.0 software (Roche Molecular Diagnostics) to interpolate sample crossing

points onto an internal standard curve prepared from tenfold serial dilutions

of a synthetic RNA transcript representing a conserved region of SIV gag.

Tissue collection and processing. At the time of euthanasia, blood, upper,

middle and lower portions of vagina, cervix and uterus, draining lymph nodes

(iliac, obturator and inguinal), mesenteric, axillary and inguinal lymph nodes,

and gut (ileum, jejunum and colon) from each animal were collected and fixed in

4% paraformaldehyde, SafeFix II (Fisher Scientific) or Streck’s fixative (Streck

Laboratories, Inc.), and embedded in paraffin for sectioning.

In situ hybridization. In situ hybridization to detect SIV RNA was performed as

previously described9. In brief, after deparaffinization and pretreatment to

permeabilize tissue and block nonspecific binding, 5-mm sections from 4%

paraformaldehyde-fixed tissues were hybridized to 35S-labelled SIV RNA anti-

sense or sense (as a negative control) riboprobes covering more than 90% of SIV

genome. After overnight hybridization, the sections were washed, digested with

RNases, coated with nuclear track emulsion, exposed, developed and counter-

stained with haematoxylin and eosin.

Construction of digital atlas of SIV vRNA1 cells in cervix and vagina. An

image of each field with SIV RNA1 cells detected by in situ hybridization was

collected sequentially using epifluorescent illumination, Olympus B-MAX

microscope, and a ‘spot insight’ digital camera (Diagnostic Instruments). To

create the montage image, the images from each section were acquired from left

to right and from top to bottom, with a ,20% overlap with the neighbouring

images to avoid gaps. Images were automatically merged into one Atlas image

using a Photoshop 7.0 automerge function. After using the Photoshop Action

procedures to associate individual silver grains with cells, the centroid x, y

coordinates of a SIV RNA1 cell were assigned using MetaMorph (version

7.1.3.) software, and these coordinates were then logged into Excel files as

numeric numbers and plotted with Excel.

Immunohistochemistry. Immunohistochemistry was performed as described9,12

using a biotin-free detection system, MACH-3 (Biocare Medical) or EnVision1

System (DakoCytomation), on 5-mm tissue sections mounted on glass slides.

Tissues were deparaffinized and rehydrated in deionized water. Heat-induced

epitope retrieval was performed using the water-bath method (95–98 uC for

10–20 min) in one of the following buffers: EDTA Decloaker reagent (Biocare

Medical), DiVA Decloaker (Biocare Medical), 10 mM sodium citrate, pH 6.0, or

1 mm EDTA, pH 8.0, followed by cooling to room temperature. Tissues sections

were blocked with SNIPER Blocking Reagent (Biocare Medical) for 1 h at room

temperature. Endogenous peroxidase was blocked with 3% (v/v) H2O2 in TBS

(pH 7.4). Primary antibodies were diluted in 10% SNIPER Blocking Reagent in

TNB (Tris-HCl, pH 7.5, 0.15 M NaCl, 0.05% Tween 20 with Dupont blocking

buffer) and incubated overnight at 4 uC. After the primary antibody incubation,

sections were washed and then incubated with mouse, goat or rabbit polymer

system reagents conjugated with either horseradish peroxidase or alkaline phos-

phatase according to the manufacturer’s instructions, and developed with

3,39-diaminobenzidine (Vector Laboratories) or Vulcan Fast Red (Biocare

Medical). Sections were counterstained with CAT Haematoxylin (Biocare

Medical), mounted in Permount (Fisher Scientific) and examined by light micro-

scopy. Primary antibodies and other reagents and protocols used are summarized

in Supplementary Table 2. All anti-human antibody reagents were demonstrated

to show good cross reactivity with the cognate macaque antigens. Isotype-

matched IgG negative control antibodies in all instances yielded negative staining

results.

Immunohistochemical staining and in situ hybridization. Combined

immunohistochemical staining and in situ hybridization were performed as

described previously9. In brief, sections were microwaved for antigen retrieval,

hybridized, washed and digested with RNases, incubated with antibody markers

for cell type, CD3, CD4, CD68, and then stained with the Dako EnVision1

Peroxidase kit with antibodies to the primary antibody and diaminobenzidine.

After washing, the sections were coated with nuclear track emulsion, exposed,

developed and counterstained with haematoxylin.

Culture of HVECs and induction and measurement of MIP-3a and IL-8.
HVECs were cultured until confluent at 37 uC, 7% CO2 in 96-well flat-bottom

microtitre plates (Becton Dickinson Labware) in 100ml per well of keratinocyte

serum free medium with antibiotics25. HIV-1 6 GML was added to wells, and,

after 6-h incubation, supernatants were collected and tested for chemokines by

ELISA as described by the manufacturer (R&D Systems). Data reported are

mean 6 s.d. We have previously shown25 that GML does not interfere with

ELISA for chemokine detection.

Microarray analysis of cervical transcriptional responses to intravaginal SIV
inoculation. Gene expression profiles in cervix of macaques before and after

intravaginal SIV inoculation at 1 and 3 d.p.i. were analysed with the GeneChip

Rhesus Macaque Genome Array (Affymetrix, Inc.), which contains ,47,000

rhesus transcripts. RNA extractions, preparation of biotin-labelled complementary

RNA (cRNA) probes, and microarray hybridization followed previously published

protocols26. In brief, snap-frozen cervical tissues from two uninfected and three

infected Indian rhesus macaques at 1 d.p.i., and from two macaques at 3 d.p.i. were

homogenized, total RNA was extracted, double-stranded complementary DNA

and biotin-labelled cRNA probes were synthesized from 5mg of total RNA.

Fifteen micrograms of fragmented cRNA was hybridized to an Affymetrix

GeneChip Rhesus Macaque Genome Array. After hybridization, chips were

washed, stained with streptavidin–phycoerythrin, and scanned with GeneChip

Operating Software at the Biomedical Genomics Center at the University of

Minnesota. The experiments from each RNA sample were duplicated in the

preparation of each cRNA probe, and microarray hybridization. Microarray data

were analysed in Expressionist program Genedata, Pro version 4.5, using the robust

multi-array analysis (RMA) algorithm. The expression levels from duplicated chips

of the same animals’ RNA were correlated and averaged. Tests for differences

between the uninfected and infected animals at 1 and 3 d.p.i. were conducted using

the two-sample t-test. Cutoff was set at P , 0.05 and $2-fold increased expression.

Statistical methods. In the initial protocol, animals were challenged twice and

then necropsied at peak replication to obtain tissues to evaluate viral replication,

whereas in the second experiment, each animal was repeatedly challenged until

all of the controls were infected. For this second experiment, we used the negative

binomial likelihood as a statistical model to interpret the results of the experi-

ment. Note that because the design of the second stage of the experiment

included the possibility that treated animals would never get infected, animals

in the treatment group who were uninfected were considered to be right

censored at the trial at which all the controls were finally infected. Because the

challenge involved two doses at each time point, our trials consist of two such

doses. Therefore, an animal that survived two challenges was subjected to four

doses. Our model supposes that a success for a trial occurs when an animal is

infected by one of these double-dose challenges. Moreover, the model supposes

that the outcome for each animal is independent and that there is a different

probability of a success for a trial depending on treatment status. Hence, if we let

h represent the probability that an animal is infected with one challenge, and an

animal is infected on the mth challenge, then this animal contributes a factor of

(1 2 h)m 2 1 3 h to the likelihood. For an animal that survives m such challenges,

because the probability that this occurs is (1 2 h)m, this animal would contribute

(1 2 h)m to the likelihood. The likelihood for each group is calculated by

multiplying the contributions from each animal in that group. Maximum like-

lihood estimates are then determined by maximizing the likelihood. We can also

compute Bayesian credible sets and the posterior probability that the probability
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of success differs between the two groups using numerical integration (using an
adaptive 15-point Gauss–Kronrod quadrature, as implemented in the software

S-plus, version 3.4 release 1, from Mathsoft, Inc.). For the groups of three

animals challenged four times, the efficacy of GML against transmission is

estimated to be at least 65%, and the probability that GML is more likely to

prevent infection than K-Y warming gel alone is 0.98. Although we prefer this

estimate, because the outcome was determined decisively, including the animals

in the pilot experiment in which we did not repeatedly challenge until infected,

five out of five GML-treated animals, and one out of five controls did not get

infected. The estimated efficacy of GML (using the same methods) in this case is

at least 72% at a probability of 0.95.
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