15 research outputs found

    FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death.

    Get PDF
    Arrhythmias, a common cause of sudden cardiac death, can occur in structurally normal hearts, although the mechanism is not known. In cardiac muscle, the ryanodine receptor (RyR2) on the sarcoplasmic reticulum releases the calcium required for muscle contraction. The FK506 binding protein (FKBP12.6) stabilizes RyR2, preventing aberrant activation of the channel during the resting phase of the cardiac cycle. We show that during exercise, RyR2 phosphorylation by cAMP-dependent protein kinase A (PKA) partially dissociates FKBP12.6 from the channel, increasing intracellular Ca(2+) release and cardiac contractility. FKBP12.6(-/-) mice consistently exhibited exercise-induced cardiac ventricular arrhythmias that cause sudden cardiac death. Mutations in RyR2 linked to exercise-induced arrhythmias (in patients with catecholaminergic polymorphic ventricular tachycardia [CPVT]) reduced the affinity of FKBP12.6 for RyR2 and increased single-channel activity under conditions that simulate exercise. These data suggest that "leaky" RyR2 channels can trigger fatal cardiac arrhythmias, providing a possible explanation for CPVT

    Dilated Cardiomyopathy with Increased SR Ca2+ Loading Preceded by a Hypercontractile State and Diastolic Failure in the α1CTG Mouse

    Get PDF
    Mice over-expressing the α1−subunit (pore) of the L-type Ca2+ channel (α1CTG) by 4months (mo) of age exhibit an enlarged heart, hypertrophied myocytes, increased Ca2+ current and Ca2+ transient amplitude, but a normal SR Ca2+ load. With advancing age (8–11 mo), some mice demonstrate advanced hypertrophy but are not in congestive heart failure (NFTG), while others evolve to frank dilated congestive heart failure (FTG). We demonstrate that older NFTG myocytes exhibit a hypercontractile state over a wide range of stimulation frequencies, but maintain a normal SR Ca2+ load compared to age matched non-transgenic (NTG) myocytes. However, at high stimulation rates (2–4 Hz) signs of diastolic contractile failure appear in NFTG cells. The evolution of frank congestive failure in FTG is accompanied by a further increase in heart mass and myocyte size, and phospholamban and ryanodine receptor protein levels and phosphorylation become reduced. In FTG, the SR Ca2+ load increases and Ca2+ release following excitation, increases further. An enhanced NCX function in FTG, as reflected by an accelerated relaxation of the caffeine-induced Ca2+ transient, is insufficient to maintain a normal diastolic Ca2+ during high rates of stimulation. Although a high SR Ca2+ release following excitation is maintained, the hypercontractile state is not maintained at high rates of stimulation, and signs of both systolic and diastolic contractile failure appear. Thus, the dilated cardiomyopathy that evolves in this mouse model exhibits signs of both systolic and diastolic failure, but not a deficient SR Ca2+ loading or release, as occurs in some other cardiomyopathic models

    Functional Genomics Unique to Week 20 Post Wounding in the Deep Cone/Fat Dome of the Duroc/Yorkshire Porcine Model of Fibroproliferative Scarring

    Get PDF
    Background: Hypertrophic scar was first described over 100 years ago; PubMed has more than 1,000 references on the topic. Nevertheless prevention and treatment remains poor, because 1) there has been no validated animal model; 2) human scar tissue, which is impossible to obtain in a controlled manner, has been the only source for study; 3) tissues typically have been homogenized, mixing cell populations; and 4) gene-by-gene studies are incomplete.Methodology/Principal Findings: We have assembled a system that overcomes these barriers and permits the study of genome-wide gene expression in microanatomical locations, in shallow and deep partial-thickness wounds, and pigmented and non-pigmented skin, using the Duroc( pigmented fibroproliferative)/Yorkshire( non-pigmented non-fibroproliferative) porcine model. We used this system to obtain the differential transcriptome at 1, 2, 3, 12 and 20 weeks post wounding. It is not clear when fibroproliferation begins, but it is fully developed in humans and the Duroc breed at 20 weeks. Therefore we obtained the derivative functional genomics unique to 20 weeks post wounding. We also obtained long-term, forty-six week follow-up with the model.Conclusions/Significance: 1) the scars are still thick at forty-six weeks post wounding further validating the model. 2) the differential transcriptome provides new insights into the fibroproliferative process as several genes thought fundamental to fibroproliferation are absent and others differentially expressed are newly implicated. 3) the findings in the derivative functional genomics support old concepts, which further validates the model, and suggests new avenues for reductionist exploration. in the future, these findings will be searched for directed networks likely involved in cutaneous fibroproliferation. These clues may lead to a better understanding of the systems biology of cutaneous fibroproliferation, and ultimately prevention and treatment of hypertrophic scarring.The National Institute on Disability and Rehabilitation ResearchThe National Institutes of HealthThe Washington State Council of Fire Fighters Burn FoundationThe Northwest Burn FoundationUniv Washington, Dept Surg, Div Plast Surg, Seattle, WA 98195 USAIowa State Univ, Dept Anim Sci, Ames, IA USAUniv Washington, Dept Biostat, Seattle, WA 98195 USAMahidol Univ, Ramathibodi Hosp, Dept Surg, Bangkok 10700, ThailandUniv Washington, Dept Environm & Occupat Hlth Sci, Seattle, WA 98195 USAUniversidade Federal de São Paulo, Div Plast Surg, Dept Surg, São Paulo, BrazilUniversidade Federal de São Paulo, Div Plast Surg, Dept Surg, São Paulo, BrazilThe National Institute on Disability and Rehabilitation Research: H133G050022The National Institutes of Health: 1R21GM074673The National Institutes of Health: 5U54GM062119-09Web of Scienc

    Remodeling of Calcium Handling in Human Heart Failure

    No full text

    Sarcoplasmic reticulum calcium mishandling central tenet in heart failure?

    No full text
    Excitation-contraction coupling links excitation of the sarcolemmal surface membrane to mechanical contraction. In the heart this link is established via a Ca-induced Ca release process, which, following sarcolemmal depolarisation, prompts Ca release from the sarcoplasmic reticulum (SR)\ua0though the ryanodine receptor (RyR2). This substantially raises the cytoplasmic Ca concentration to trigger systole. In diastole, Ca is removed from the cytoplasm, primarily via the sarcoplasmic-endoplasmic reticulum Ca-dependent ATPase (SERCA) pump on the SR\ua0membrane, returning Ca to the SR store. Ca movement across the SR is thus fundamental to the systole/diastole cycle and plays an essential role in maintaining cardiac contractile function. Altered SR Ca homeostasis (due to disrupted Ca release, storage, and reuptake pathways) is a central tenet of heart failure and contributes to depressed contractility, impaired relaxation, and propensity to arrhythmia. This review will focus on the molecular mechanisms that underlie asynchronous Ca cycling around the SR in the failing heart. Further, this review will illustrate that the combined effects of expression changes and disruptions to RyR2 and SERCA2a regulatory pathways are critical to the pathogenesis of heart failure

    Intracellular calcium leak in heart failure and atrial fibrillation: a unifying mechanism and therapeutic target

    No full text

    Neurohumoral activation in heart failure: the role of adrenergic receptors

    No full text
    Heart failure (HF) is a common endpoint for many forms of cardiovascular disease and a significant cause of morbidity and mortality. The development of end-stage HF often involves an initial insult to the myocardium that reduces cardiac output and leads to a compensatory increase in sympathetic nervous system activity. Acutely, the sympathetic hyperactivity through the activation of beta-adrenergic receptors increases heart rate and cardiac contractility, which compensate for decreased cardiac output. However, chronic exposure of the heart to elevated levels of catecholamines released from sympathetic nerve terminals and the adrenal gland may lead to further pathologic changes in the heart, resulting in continued elevation of sympathetic tone and a progressive deterioration in cardiac function. On a molecular level, altered beta-adrenergic receptor signaling plays a pivotal role in the genesis and progression of HF. beta-adrenergic receptor number and function are decreased, and downstream mechanisms are altered. In this review we will present an overview of the normal beta-adrenergic receptor pathway in the heart and the consequences of sustained adrenergic activation in HF. The myopathic potential of individual components of the adrenergic signaling will be discussed through the results of research performed in genetic modified animals. Finally, we will discuss the potential clinical impact of beta-adrenergic receptor gene polymorphisms for better understanding the progression of HF.<br>A insuficiência cardíaca (IC) é a via final comum da maioria das doenças cardiovasculares e uma das maiores causas de morbi-mortalidade. O desenvolvimento do estágio final da IC freqüentemente envolve um insulto inicial do miocárdio, reduzindo o débito cardíaco e levando ao aumento compensatório da atividade do sistema nervoso simpático (SNS). Existem evidências de que apesar da exposição aguda ser benéfica, exposições crônicas a elevadas concentrações de catecolaminas, liberadas pelo terminal nervoso simpático e pela glândula adrenal, são tóxicas ao tecido cardíaco e levam a deterioração da função cardíaca. Em nível molecular observa-se que a hiperatividade do SNS está associada a alterações na sinalização intracelular mediada pelos receptores beta-adrenérgicos. Sabe-se que tanto a densidade como a função dos receptores beta-adrenérgicos estão diminuídas na IC, assim como outros mecanismos intracelulares subjacentes à estimulação da via receptores beta-adrenérgicos. Nesta revisão, apresentaremos uma breve descrição da via de sinalização dos receptores beta-adrenérgicos no coração normal e as conseqüências da hiperatividade do SNS na IC. Daremos ênfase ao potencial miopático de diversos componentes da cascata de sinalização dos receptores beta-adrenérgicos discutindo estudos realizados com animais geneticamente modificados. Finalmente, discorreremos sobre o impacto clínico do conhecimento dos polimorfismos para o gene do receptor beta-adrenérgico para um melhor entendimento da progressão da IC
    corecore