740 research outputs found

    Harbour porpoises (Phocoena phocoena) and wind farms: a case study in the Dutch North Sea

    Get PDF
    The rapid increase in development of offshore wind energy in European waters has raised concern for the possible environmental impacts of wind farms. We studied whether harbour porpoise occurrence has been affected by the presence of the Dutch offshore wind farm Egmond aan Zee. This was done by studying acoustic activity of porpoises in the wind farm and in two reference areas using stationary acoustic monitoring (with T-PODs) prior to construction (baseline: June 2003 to June 2004) and during normal operation of the wind farm (operation: April 2007 to April 2009). The results show a strong seasonal pattern, with more activity recorded during winter months. There was also an overall increase in acoustic activity from baseline to operation, in line with a general increase in porpoise abundance in Dutch waters over the last decade. The acoustic activity was significantly higher inside the wind farm than in the reference areas, indicating that the occurrence of porpoises in this area increased as well. The reasons of this apparent preference for the wind farm area are not clear. Two possible causes are discussed: an increased food availability inside the wind farm (reef effect) and/or the absence of vessels in an otherwise heavily trafficked part of the North Sea (sheltering effect

    Modeling Klein tunneling and caustics of electron waves in graphene

    Get PDF
    We employ the tight-binding propagation method to study Klein tunneling and quantum interference in large graphene systems. With this efficient numerical scheme, we model the propagation of a wave packet through a potential barrier and determine the tunneling probability for different incidence angles. We consider both sharp and smooth potential barriers in n-p-n and n-n' junctions and find good agreement with analytical and semiclassical predictions. When we go outside the Dirac regime, we observe that sharp n-p junctions no longer show Klein tunneling because of intervalley scattering. However, this effect can be suppressed by considering a smooth potential. Klein tunneling holds for potentials changing on the scale much larger than the interatomic distance. When the energies of both the electrons and holes are above the Van Hove singularity, we observe total reflection for both sharp and smooth potential barriers. Furthermore, we consider caustic formation by a two-dimensional Gaussian potential. For sufficiently broad potentials we find a good agreement between the simulated wave density and the classical electron trajectories.Comment: 14 pages, 12 figure

    Grey seals (Halichoerus grypus) in the Dutch North sea: population ecology and effects of wind farms

    Get PDF
    This study was setup to gain an understanding of the possible effects of large-scale development of wind farms in Dutch waters on grey seals (Halichoerus grypus). This should be considered a first step in doing so as up until now relatively little was known about the species in Dutch waters. The study was carried out in the framework of WE@SEA a foundation aimed at acquiring knowledge in the field of offshore wind energy

    Rapid recovery of Dutch gray seal colonies fuelled by immigration

    Get PDF
    Gray seals were first observed breeding in the Dutch Wadden Sea in 1985, after centuries of absence. The breeding colony there is now the largest on the European continent. We describe the changes in gray seal numbers and their geographical expansion, and estimate how these processes were influenced by immigration from other colonies. Counts of hauled out animals were carried out between 1985 and 2013, monitoring three different periods of the seals’ annual cycle. Using priors determined for the UK population, a Bayesian demographic model was fitted to pup numbers to estimate the population parameters driving the growth. This included immigration of sub-adults into the breeding population, which contributed to an average growth rate in the pup counts of 19%/y, much higher than expected in a closed population. This immigration may account for approximately 35% of the total annual growth. In addition, at least 200 grey seals from the UK visit the area temporarily. Recovery of the population in the Netherlands occurred more than 50 yr after gray seals were protected in the UK. These time scales should be taken into account when studying long living marine mammals, e.g. in impact and conservation studies

    In search of virus carriers of the 1988 and 2002 phocine distemper virus outbreaks in European harbour seals

    Get PDF
    European harbour seal (Phoca vitulina) populations decreased substantially during the phocine distemper virus (PDV) outbreaks of 1988 and 2002. Different hypotheses have stated that various seals and terrestrial carnivore species might be the source of infection. To further analyse these hypotheses, grey (Halichoerus grypus) and ringed (Phoca hispida) seals, polar bears (Ursus maritimus) and minks (Mustela lutreola) were sampled from the North Sea and East Greenland coasts between 1988 and 2004 and investigated by RT-PCR using a panmorbillivirus primer pair. However, all samples were negative for morbillivirus nucleic acid

    Measurement of the temperature of an ultracold ion source using time-dependent electric fields

    Get PDF
    We report on a measurement of the characteristic temperature of an ultracold rubidium ion source, in which a cloud of laser-cooled atoms is converted to ions by photo-ionization. Extracted ion pulses are focused on a detector with a pulsed-field technique. The resulting experimental spot sizes are compared to particle-tracking simulations, from which a source temperature T=(1±2)T = (1 \pm 2) mK and the corresponding transversal reduced emittance ϵr=7.9X109\epsilon_r = 7.9 X 10^{-9} m rad eV\sqrt{\rm{eV}} are determined. We find that this result is likely limited by space charge forces even though the average number of ions per bunch is 0.022.Comment: 8 pages, 11 figure

    Mapping individual electromagnetic field components inside a photonic crystal

    Get PDF
    We present a method to map the absolute electromagnetic field strength inside photonic crystals. We apply the method to map the electric field component Ez of a two-dimensional photonic crystal slab at microwave frequencies. The slab is placed between two mirrors to select Bloch standing waves and a subwavelength spherical scatterer is scanned inside the resulting resonator. The resonant Bloch frequencies shift depending on the electric field at the position of the scatterer. To map the electric field component Ez we measure the frequency shift in the reflection and transmission spectrum of the slab versus the scatterer position. Very good agreement is found between measurements and calculations without any adjustable parameters.Comment: 12 pages, 7 figure

    Free expansion of lowest Landau level states of trapped atoms: a wavefunction microscope

    Full text link
    We show that for any lowest-Landau-level state of a trapped, rotating, interacting Bose gas, the particle distribution in coordinate space in a free expansion (time of flight) experiment is related to that in the trap at the time it is turned off by a simple rescaling and rotation. When the lowest-Landau-level approximation is valid, interactions can be neglected during the expansion, even when they play an essential role in the ground state when the trap is present. The correlations in the density in a single snapshot can be used to obtain information about the fluid, such as whether a transition to a quantum Hall state has occurred.Comment: 5 pages, no figures. v2: discussion of neglect of interactions during expansion improved, refs adde

    Rotating spin-1 bosons in the lowest Landau level

    Full text link
    We present results for the ground states of a system of spin-1 bosons in a rotating trap. We focus on the dilute, weakly interacting regime, and restrict the bosons to the quantum states in the lowest Landau level (LLL) in the plane (disc), sphere or torus geometries. We map out parts of the zero temperature phase diagram, using both exact quantum ground states and LLL mean field configurations. For the case of a spin-independent interaction we present exact quantum ground states at angular momentum LNL\leq N. For general values of the interaction parameters, we present mean field studies of general ground states at slow rotation and of lattices of vortices and skyrmions at higher rotation rates. Finally, we discuss quantum Hall liquid states at ultra-high rotation.Comment: 24 pages, 14 figures, RevTe

    Evidence for a New Excitation at the Interface Between a High-Tc Superconductor and a Topological Insulator

    Full text link
    High-temperature superconductors exhibit a wide variety of novel excitations. If contacted with a topological insulator, the lifting of spin rotation symmetry in the surface states can lead to the emergence of unconventional superconductivity and novel particles. In pursuit of this possibility, we fabricated high critical-temperature (Tc ~ 85 K) superconductor/topological insulator (Bi2Sr2CaCu2O8+delta/Bi2Te2Se) junctions. Below 75 K, a zero-bias conductance peak (ZBCP) emerges in the differential conductance spectra of this junction. The magnitude of the ZBCP is suppressed at the same rate for magnetic fields applied parallel or perpendicular to the junction. Furthermore, it can still be observed and does not split up to at least 8.5 T. The temperature and magnetic field dependence of the excitation we observe appears to fall outside the known paradigms for a ZBCP
    corecore