541 research outputs found

    How Does the Main Infective Stage of <em>T. cruzi</em> Enter and Avoid Degradation in Host Cells? A Description of the Pathways and Organelles Involved on These Processes

    Get PDF
    Trypanosoma cruzi, the etiological agent of Chagas disease, is an intracellular parasite that targets specific proteins of the host cell resulting in the generation of a unique parasitophorous vacuole (PV). As an intracellular parasite, T. cruzi interacts with cells from the mammalian host. Here we review aspects related with the binding of the main infective developmental stage (trypomastigote) to the host cell and its recognition by surface-exposed ligands/receptors. This process involves numerous signaling pathways and culminates in the entry of the parasite and modifications in both cells. The invasion of trypomastigotes occurs through multiple endocytic process, assembly of the PV, interaction of this vacuole with the endolysosomal system, lysis of the PV membrane, and multiplication of amastigotes within the cell in direct contact with host cell organelles

    Inhibition of NAD+-dependent histone deacetylases (sirtuins) causes growth arrest and activates both apoptosis and autophagy in the pathogenic protozoan Trypanosoma cruzi

    Get PDF
    Chagas disease, which is caused by the parasite Trypanosoma cruzi, affects approximately 7–8 million people in Latin America. The drugs available to treat this disease are ineffective against chronic phase disease and are associated with toxic side effects. Therefore, the development of new compounds that can kill T. cruzi at low concentrations is critically important. Herein, we report the effects of a novel 3-arylideneindolin-2-one that inhibits sirtuins, which are highly conserved proteins that are involved in a variety of physiological processes. The compound KH-TFMDI was tested against the epimastigote, trypomastigote and amastigote forms of T. cruzi, and its effects were evaluated using flow cytometry, light and electron microscopy. KH-TFMDI inhibited the replication of T. cruzi intracellular amastigotes with an IC50 of 0·5±0·2 ÎŒ m, which is significantly lower than the IC50 of benznidazole. The compound also lysed the highly infectious bloodstream trypomastigotes (BST) with LC50 values of 0·8±0·3 ÎŒ m at 4 °C and 2·5±1·1 ÎŒ m at 37 °C. KH-TFMDI inhibited cytokinesis and induced several morphological changes in the parasite, leading to its death by apoptosis and autophagy. This study highlights sirtuins as a potential new target for Chagas disease therapy

    Identification of QoI fungicide-resistant genotypes of the wheat pathogen Zymoseptoria tritici in Algeria

    Get PDF
    Septoria tritici blotch caused by Zymoseptoria tritici is currently one of the most damaging diseases on bread and durum wheat crops worldwide. A total of 120 monoconidial isolates of this fungus were sampled in 2012 from five distinct geographical locations of Algeria (Guelma, Annaba, Constantine, Skikda and Oran) and assessed for resistance to Quinone outside Inhibitors (QoI), a widely used class of fungicides for the control of fungal diseases of wheat. Resistance was screened using a mismatch PCR assay that identified the G143A mitochondrial cytochrome b substitution associated with QoI resistance. The isolates were QoI-sensitive, since all possessed the G143 wild-type allele, except for three isolates (two from Guelma and one from Annaba), which had fungicide resistance and possessed the A143 resistant allele. QoI resistance was confirmed phenotypically using a microplate bioassay in which the resistant isolates displayed high levels of half-maximal inhibitory azoxystrobin concentrations (IC50s) when compared to sensitive reference isolates. Genetic fingerprinting of all isolates with microsatellite markers revealed that the three resistant isolates were distinct haplotypes, and were are not genetically distinguishable from the sensitive isolates. This study highlights QoI-resistant genotypes of Z. tritici in Algeria for the first time, and proposes a management strategy for QoI fungicide application to prevent further spread of resistance across the country or to other areas of Northern Africa

    Evolution of Mycosphaerella graminicola at the wheat leaf and field levels

    Get PDF
    The aim of this study was to compare Mycosphaerella graminicola populations at the field and lesion levels. The evolution of M. graminicola populations from a single field in the “Morbihan” county (France), between 2005 and 2006, was first investigated for 37 strains using molecular fingerprinting by microsatellite markers (ST1A4, ST1E3, ST1E7 and ST1D7) and SSCP analysis of partial actin and ÎČ-tubulin encoding sequences. Similar gene diversity was observed in the 2005 and 2006 populations, with no common clones between the two years. This indicates frequent sexual recombination by the fungus. When considering each marker independently and comparing marker genetic variability for the two populations, differences in the genetic variability were detected in 2006 population compared to the 2005 population. ST1A4, ST1D7 and the partial sequence of actin presented a decrease in genetic variability of the 2006 strains, while for ST1E3, ST1E7 and the partial sequence of ÎČ-tubulin showed an increase, revealing the importance of the chosen markers. In addition, 29 strains collected in 2006 from three distinct lesions on the same wheat leaf in the “Nord” county were also investigated for genetic diversity. MAT1-1 and MAT1-2 were found in the same lesion offering opportunities for sexual contact

    Update of the Scientific Opinion on the risks to plant health posed by Xylella fastidiosa in the EU territory

    Get PDF
    EFSA was asked to update the 2015 EFSA risk assessment on Xylella fastidiosa for the territory of the EU. In particular, EFSA was asked to focus on potential establishment, short‐ and long‐range spread, the length of the asymptomatic period, the impact of X. fastidiosa and an update on risk reduction options. EFSA was asked to take into account the different subspecies and Sequence Types of X. fastidiosa. This was attempted throughout the scientific opinion but several issues with data availability meant that this could only be partially achieved. Models for risk of establishment showed most of the EU territory may be potentially suitable for X. fastidiosa although southern EU is most at risk. Differences in estimated areas of potential establishment were evident among X. fastidiosa subspecies, particularly X. fastidiosa subsp. multiplex which demonstrated areas of potential establishment further north in the EU. The model of establishment could be used to develop targeted surveys by Member States. The asymptomatic period of X. fastidiosa varied significantly for different host and pathogen subspecies combinations, for example from a median of approximately 1 month in ornamental plants and up to 10 months in olive, for pauca. This variable and long asymptomatic period is a considerable limitation to successful detection and control, particularly where surveillance is based on visual inspection. Modelling suggested that local eradication (e.g. within orchards) is possible, providing sampling intensity is sufficient for early detection and effective control measures are implemented swiftly (e.g. within 30 days). Modelling of long‐range spread (e.g. regional scale) demonstrated the important role of long‐range dispersal and the need to better understand this. Reducing buffer zone width in both containment and eradication scenarios increased the area infected. Intensive surveillance for early detection, and consequent plant removal, of new outbreaks is crucial for both successful eradication and containment at the regional scale, in addition to effective vector control. The assessment of impacts indicated that almond and Citrus spp. were at lower impact on yield compared to olive. Although the lowest impact was estimated for grapevine, and the highest for olive, this was based on several assumptions including that the assessment considered only Philaenus spumarius as a vector. If other xylem‐feeding insects act as vectors the impact could be different. Since the Scientific Opinion published in 2015, there are still no risk reduction options that can remove the bacterium from the plant in open field conditions. Short‐ and long‐range spread modelling showed that an early detection and rapid application of phytosanitary measures, consisting among others of plant removal and vector control, are essential to prevent further spread of the pathogen to new areas. Further data collection will allow a reduction in uncertainty and facilitate more tailored and effective control given the intraspecific diversity of X. fastidiosa and wide host range.Additional co-authors: EFSA Panel on Plant Health (PLH), Wopke van der Werf, Antonio Vicent Civera, Jonathan Yuen, Lucia ZappalĂ , Donato Boscia, Gianni Gilioli, Rodrigo Krugner, Alexander Mastin, Anna Simonetto, Joao Roberto Spotti Lopes, Steven White, JosĂ© Cortinas Abrahantes, Alice Delbianco, Andrea Maiorano, Olaf Mosbach‐Schulz, Giuseppe Stancanelli, Michela Guzzo, Stephen Parnel

    Pest categorisation of Conotrachelus nenuphar

    Get PDF
    The EFSA Panel on Plant Health performed a pest categorisation of Conotrachelus nenuphar (Herbst) (Coleoptera: Curculionidae), for the EU. C. nenuphar is a well-defined species, recognised as a serious pest of stone and pome fruit in the USA and Canada where it also feeds on a range of other hosts including soft fruit (e.g. Ribes, Fragaria) and wild plants (e.g. Crataegus). Adults, which are not good flyers, feed on tender twigs, flower buds and leaves. Females oviposit into host fruit; if oviposition occurs in young fruit, the fruit usually falls prematurely reducing yield; oviposition in older fruit causes surface blemishes and the fruit distorts as it develops reducing marketability. Larvae develop within host fruit but exit to pupate in soil. Adults overwinter in leaf litter. C. nenuphar is not known to occur in the EU and is listed in Annex IAI of Council Directive 2000/29/EC. Fruit infested shortly before harvest and soil with leaf litter accompanying plants for planting could potentially provide a pathway into the EU. Considering the climatic similarities between North America and Europe, and that hosts occur widely within the EU, C. nenuphar has potential to establish within the EU. There could be one or two generations per year, as in North America. Impacts could be expected, e.g. in Prunus spp. and apples. Phytosanitary measures are available to reduce the likelihood of introduction of C. nenuphar. All of the criteria assessed by EFSA for consideration as a potential Union quarantine pest are met. C. nenuphar does not meet the criteria of occurring in the EU nor plants for planting being the principal means of spread. Hence it does not satisfy all of the criteria that are within the remit of EFSA to assess for it to be regarded as a Union regulated non-quarantine pest (RNQP)

    Pest categorisation of Sternochetus mangiferae

    Get PDF
    The European Commission requested EFSA to conduct a pest categorisation of Sternochetus mangiferae (Coleoptera: Curculionidae), a monophagous pest weevil whose larvae exclusively feed on mango seeds, whereas adults feed on mango foliage. S. mangiferae is a species with reliable methods available for identification. It is regulated in the EU by Council Directive 2000/29/EC where it is listed in Annex IIB as a harmful organism whose introduction into EU Protected Zones (PZ) (Alentejo, Algarve and Madeira in Portugal, and Granada and Malaga in Spain) is banned. S. mangiferae is native to South East Asia and has spread to other mango-growing areas in Africa, South America and Oceania, causing significant damage. Larvae of S. mangiferae have been detected several times in mango fruit imported into the EU. In 2013, an outbreak was declared in one PZ in Spain. Official measures taken achieved eradication, which was officially declared in January 2018. The EFSA Plant Health Panel concludes that S. mangiferae could establish again and spread in the mango-growing areas of southern EU. Considering the criteria within the remit of EFSA to assess the status as a potential Union quarantine pest (QP), as a potential protected zone quarantine pest (PZQP) or as a potential regulated non-quarantine pest (RNQP), S. mangiferae meets with no uncertainties the criteria for consideration as a potential Union QP, as it is absent from the EU, potential pathways for entry exist, and its establishment would cause an economic impact. The criterion of the pest being present in the EU, which is a prerequisite for RNQP and PZ QP, is not met
    • 

    corecore