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1. Introduction 

Plant disease resistance can be defined as the ability of the plant to prevent or restrict 

pathogen growth and multiplication. All plants, whether they are resistant or susceptible, 

respond to pathogen attack by the induction of a coordinated resistance strategy. 

Acceleration and/or amplification of the plant responses by the application of resistance 

inducers could provide a biologically, environmentally and commercially viable alternative 

to existing pathogen control methods [1]. 

Among pathogenic fungi, the obligate parasite Blumeria graminis f. sp. tritici (Bgt) is 

responsible for wheat (Triticum aestivum) powdery mildew, one of the most damaging foliar 

diseases of this crop, especially in Northern Europe. Worldwide yield losses due to wheat 

powdery mildew would be about 30% without chemical treatments, so that an extensive use 

of conventional fungicides is undertaken. Moreover, populations of Bgt resistant to the main 

chemical fungicides (ergosterol biosynthesis inhibitors, EBIs and 2-aminopyridines) are 

rising, and these resistant strains emerged all over most European territories [2]. New 

disease management strategies based on the use of molecules that induce plant resistance via 

the elicitation of defence responses are therefore developed in order to reduce the use of 

conventional fungicides. These strategies match the growing concern about the 

consequences of the use of fungicides on both health and environment [3,4]. 

Induced partial resistance against B. graminis f.sp. tritici has been obtained in wheat with 

different elicitors and resistance inducers. Infection level was reduced to 57% and 58% 

relative to controls when nonacetylated and acetylated oligogalacturonides, respectively, 

were sprayed on wheat 48h before inoculation with Bgt [5]. Trehalose, a non-reducing 

disaccharide found in a wide variety of organisms, confers a 60% protection level against 
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powdery mildew [6]. It has also been shown that a double spraying of wheat plantlets with 

salicylic acid (SA) confers a 65% protection level against powdery mildew [7]. Prophylactic 

efficacies of Iodus 40® and heptanoyl salicylic acid (HSA) against wheat powdery mildew 

have been tested [8]. Iodus 40®, a commercial product, is used to decrease wheat powdery 

mildew damage in the field. Its active ingredient is laminarin, a storage β-1,3-D-glucan 

(polysaccharide), extracted from the brown alga Laminaria digitata. It induces protection in 

grapevine against Botrytis cinerea and Plasmopara viticola [9] as well as in wheat against 

powdery mildew [8]. HSA is synthesized by esterification of 2-OH benzoic acid by 

heptanoic acid [7]. Plantlets treated twice exhibited 60% and 100% protection levels, 

respectively [8]. A long up-to-run-off spraying of wheat leaves with Milsana®, an ethanolic 

extract from leaves of the giant knotweed Reynoutria sachaliensis, 48h before inoculation led 

to a 97% protection level against powdery mildew [10]. No direct effect against the fungus 

has been noticed for any of these elicitors [8] except for Milsana® which exhibited a direct 

fungistatic effect on B. graminis conidia germination [10]. It is now necessary to understand 

the mode of action and the cascade of cellular and molecular events triggered by these 

wheat resistance inducers. 

In the last fifteen years, SA itself has been described as playing a key role in the activation of 

defence systems against pathogens in plants. Despite several reports [11-14], works focusing 

on SA as a resistance inducer are far from being as extensive as those concerning BTH, a 

functional analogue of SA, and, as far as we know, a single one involved wheat [8]. 

Plant lipids and lipid metabolic pathways have been shown to be of crucial importance during 

a plant-pathogen interaction. Many changes in membrane lipids are known to occur in plants 

at the site of infection. Moreover, lipids and lipid metabolites, released from membranes,  

function and act as signal molecules in the activation of plant defence responses [15]. 

Over the past few years, it has become increasingly clear that phosphatidic acid (PA) is 

involved in stress signaling because it is rapidly and transiently formed in response to 

various environmental stimuli [16]. PA could be generated by 2 distinct pathways as shown 

in figure 1: a first one involves phospholipase D (PLD) acting hydrolytically on membrane 

phospholipids, particularly phosphatidylcholine (PC) and phosphatidylethanolamine (PE); 

a second one involves phospholipase C (PLC) acting sequentially with diacylglycerol kinase 

(DGK) via diacylglycerol (DAG) phosphorylation [17].  

Phospholipid-signaling pathways are complex, interrelated, and involve numerous enzymes 

and substrates [18]. As an ubiquitous enzyme family, phospholipases play various roles in 

stress responses [19]. Beside PLC and PLD, a main class of phospholipases A (PLA) 

hydrolyze phospholipids (such as PC) into the corresponding free fatty acid and 

lysophospholipid (such as lysoPC). Such a fatty acid can be a precursor for oxylipin 

biosynthesis, and lysoPC may be involved in multiple cellular processes [20]. One important 

finding on functions of lysoPC is that it can activate H+-ATPase in the tonoplast and cause 

cytoplasmic acidification, which is shown to activate defense responses and phytoalexin 

production [21]. The lipid messengers derived from hydrolysis of the plasma membrane are 

illustrated in figure 2.  
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Figure 1. Formation and attenuation of phosphatidic acid (PA) [16] 

 

Figure 2. Lipid messengers derived from hydrolysis of plasma membrane [22] 
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Adaptation of higher plants to biotic and abiotic stress is often accompanied by the 

occurrence of lipid peroxidation and metabolites which derived therefrom are called 

oxylipins. Lipid peroxydation may be the result of a coordinated action of enzymes or the 

result of auto-oxidation (Figure 3). Oxylipins are potent signaling molecules in the defense 

response in plants [23]. The synthesis of oxylipins is first catalyzed by lipoxygenases (LOXs), 

which add molecular oxygen to polyunsaturated fatty acids (PUFAs) to yield the 

corresponding fatty acid hydroperoxides that are substrates for other enzymes (figure 4) 

[24]. Based on their regiospecificity, the dioxygenation occurs at C-9 or C-13 and LOXs have 

been thus classified as 9- and 13-LOX, which yield 9- or 13-hydroperoxides, respectively 

[25]. In the case of linolenic acid C18:3 and 13-LOX, the resulting product is 13-HPOT 

(hydroperoxy octadectrienoic acid) [15]. These LOX-derived hydroperoxides can be 

converted through different reactions of the LOX pathway, particularly by an allene oxide 

synthase (AOS) leading to jasmonic acid (JA). Most of the LOX-derived compounds are 

considered as acting in plant defense reactions: indeed, C6 volatiles induce defense-related 

genes expression [26], divinyl ethers are antifungal [27], and JA is an important signaling 

compound that is involved in plant response to biotic stress [28,29]. Jasmonates are 

primarily derived from the C18:3 FA, which is released from membrane lipids via the 

activity of phospholipase A1.  

 

Figure 3. Schematic illustration of biosynthetic pathway of JA and other related oxylipins [22] 

The phospholipase A (PLA) superfamily which catalyzes the hydrolysis of membrane 

phospholipids, acts up-stream the LOX to generate the corresponding PUFAs and 

lysophospholipids [30]. PLA may be involved in the release of free fatty acids for the 

biosynthesis of JA during the activation of plant defence responses. Indeed, three tobacco 

genes that encode putative members of the patatin family of PLAs, were identified [31]. 



 
Lipids as Markers of Induced Resistance in Wheat: A Biochemical and Molecular Approach 367 

Their expression is induced by microbial elicitors and upon exposure to pathogen. The high 

expression level of these PLA genes precedes the accumulation of JA in pathogen-inoculated 

or elicitor-treated tissues. Activation of PLA has also been reported in response to TMV 

infection in tobacco [32] and elicitor treatment of cultured parsley cells [33]. 

 

Figure 4. Enzymatic and non-enzymatic mechanisms leading to the synthesis of oxylipins in plants [15] 

FAs not only serve as the major source of reserve energy but also consist of complex lipids, 

which are essential components of cellular membrane lipids. Increasing evidence also shows 

the involvement of FAs and their derivatives in signaling and altering normal and disease-

related physiologies in microbes, insects, animals, and plants. In plants, FAs modulate a 

variety of responses to biotic and abiotic stresses. For instance, PUFAs levels in chloroplastic 

membranes affect membrane lipid fluidity and determine the plant’s ability to acclimatize to 

temperature stress [34]. Linolenic acid (18:3) is involved in protein modifications in heat-

stressed plants [35]. FAs also regulate salt, drought, and heavy metal tolerance as well as 

wound-induced responses and defense against insect and herbivore feeding in plants [36]. 

FA metabolic pathways play significant roles in defense against pathogens. Classically, only 

passive roles were assigned to FAs in plant defense such as providing biosynthetic 

precursors for cuticular components (studies of FA metabolic mutants also reveal an active 

signaling role for the cuticle in plant defense) or JA, well known for its role in wound 

responses and plant defense against insect pathogens. However, recent works demonstrate 

more direct roles for FAs and their breakdown products in inducing various modes of plant 

defenses. Both 16- and 18-carbon FAs participate in defense to modulate basal, effector-

triggered, and systemic immunity in plants [37]. 

Furthermore, lipid transfer proteins (LTPs), located in the cell wall, participate in the in vitro 

transfer of phospholipids between membranes and can bind acyl chains. Based on these 
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properties, LTPs are thought to be involved in membrane biogenesis and regulation of 

intracellular FA pools [38]. Many roles were suggested for LTPs: involvement in cutin 

formation, embryogenesis, symbiosis and adaptation of plants to various environmental 

conditions [39]. Among them, defensive role of LTPs has been proposed. Indeed, LTPs have 

been naturally classified as members of pathogenesis-related (PR) proteins belonging to the 

group PR-14 [40]. Some members of this family have the ability to inhibit the growth of 

fungal pathogens in barley and maize [41], in sunflower against Fusarium solani [42], in 

transgenic rice against Magnaporthe grisea, Rhizoctonia solani and Xanthonomas oryzae [43]. In 

transgenic wheat expressing Ace-AMP, the corresponding encoded LTP showed enhanced 

antifungal activity against Bgt [44]. Ltp3F1, a novel gene encoding an antifungal protein 

against Alternaria sp., Curcularia lunata, Bipolaris oryzae and Sarocladium oryzae was 

characterized from wheat [45]. 

In this review, we will discuss further and extend the study conducted by Renard-Merlier et 

al. [46], where a global investigation of total FA content in relation to treatment with four 

inducers of resistance and to powdery mildew infection was undertaken. Previous studies 

established that lipid metabolism is altered by Milsana®, Iodus 40®, HSA, SA and trehalose 

[8,10]; therefore, our work aimed to characterize their impact at the total FA level. During a 

time course experiment, content (quantitative analysis) and percentage (qualitative analysis) 

of FAs were compared in treated plants and in controls, as well as in non-inoculated (ni) 

plants and Bgt-challenged plants (i). Previous results will be considered and discussed 

relatively to new findings. 

Moreover, the effect of one resistance inducer, namely SA, on lipid metabolism is evaluated 

by molecular and biochemical approaches.  

Phospholipids being the major membrane components, we investigated PC, PE, DAG and 

PA content variation in wheat leaves infiltrated with salicylic acid (SA). SA can modulate 

the content variation of these compounds, reservoirs from which biologically active lipids 

and precursors of oxidized lipids are released. 

At the transcriptional level, a PLC-encoding gene expression was investigated in an attempt 

to assign any participation of this pathway in the phospholipids equilibrium described 

above.  

We also investigated free FAs and PLFAs content variations in SA-infiltrated wheat leaves; 

this pool of lipids is quite interesting since it ensures several functions, from being an energy 

source to acting as cellular messengers; the latter being highly related to resistance induction 

in plants. The lipoxygenase response to SA-infiltration, at the molecular and enzymatic 

level, was also evaluated; this enzyme activity is important for oxylipins biosynthesis in 

plants, because of its position upstream the cascade of enzymatic lipid peroxydation. 

An LTP-encoding gene expression was also monitored, taking into account the possible 

antifungal activity of LTPs as well as their ability to bind and transport membrane lipids, 

thus participating in lipid-mediated signaling mechanisms. 
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2. Material and methods 

2.1. Treatments application 

Wheat (Triticum aestivum) cultivar Orvantis was used throughout the experiments. It was 

provided by Benoit C.C. (Orgerus, France). This cultivar is fully susceptible to the 

MPEBgt1 powdery mildew isolate. First leaf of ten-day-old wheat plantlets was infiltrated 

with salicylic acid (1g/L) solution using a hypodermic syringe without needle. Infiltrated 

area was delineated with a marker pen. Control plantlets were infiltrated with distillated 

water. 

Ten-day-old wheat seedlings were treated with solutions of Iodus 40® (1g/L), HSA (1g/L), 

Milsana® (0.3% v/v) and trehalose (15g/L) as described by Renard-Merlier et al. [46]. 

Treatments consisted in “up-to-run-off” sprayings. Two days after inducer treatments, 

seedlings to be inoculated were sprayed with conidia of Bgt suspended in Fluorinert FC43 at 

a concentration of 5.106 spores.mL-1. 

2.2. RNA extraction and quantification of gene expression by real-time PCR 

SA and water-infiltrated wheat leaves were sampled at 3, 6, 9, 12, 15, 18, 21, 24, 48, 72 and 96 

hours after infiltration (hai) and stored at -80oC until use. Total RNA was extracted from 100 

mg plant tissue using RNeasy Plant Mini Kit (Quiagen, The Netherlands) with some 

modifications of the protocol. cDNA synthesis was carried out using High Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems, USA) according to the manufacturer’s 

protocol. Real Time qPCR was performed using ABI Prism 7300 detection system (Applied 

Biosystems, USA). The tub and ef1α genes, encoding respectively for tubulin and elongation 

factor ef1alpha, were used as reference genes. The relative expression of the target genes 

was evaluated in SA-infiltrated wheat leaves compared with water-infiltrated leaves and 

normalized to the tub and ef1a expression level. The analyses were performed using the 

relative expression software tool REST® as described in [47]. The experiments were 

repeated twice with similar results and representative results are presented. 

2.3. LOX assay 

LOX was assayed as described in [10] according to [48] and [49] with slight modifications. 

The results are the mean of three biological repetitions. 

2.4. Fatty acid extraction and analysis 

Total cellular FAs extraction and purification were performed by the authors in [46] using 

adapted protocols from [50]. The results are means of three independent repetitions. 

Free FAs, PLFA and PL extraction was carried out according to the method described in 

[51]. Data shown are the results of the first experiment, which need to be confirmed by a 

biological repetition.  



 

Lipid Metabolism 370 

3. Results and discussion 

3.1. PA content increases after SA infiltration 

Because of its central position in the pathways mentioned above, the first results presented 

here have been obtained for PA. Table 1 shows the variations in PA levels in SA-infiltrated 

leaves, compared to the control. No change in PA content was observed during the first 24 

hours after infiltration (hai) of SA, compared to the water-infiltrated wheat leaves; even 

though a slight accumulation of PA was observed in water-infiltrated leaves in comparison 

to the untreated plants, probably due to the stress generated by the infiltration. However, 

SA induced increases in PA content from 24 h till 96 hai, with a maximum of 6.2-fold 

increase at 72 hai. 

 

 Time after SA infiltration 

 24h 48h 72h 96h 

PA content 
2.2-fold 

increase 
2.7-fold increase 6.2-fold increase 1.19-fold increase 

Table 1. Variations in PA levels in SA-infiltrated wheat leaves compared to the water-infiltrated control 

These results confirm some variations in PA content reported by several authors. 

Treatment of A. thaliana protoplasts with H2O2 increases PA content by 30% [52]. 

Furthermore, elicitors from plant pathogens activate the PLC-DGK pathway, which 

consisted of a rapid accumulation of PA within 2 minutes in transgenic tobacco cells 

treated with the race-specific elicitor Avr4 [53]. A transient accumulation of PA was also 

recorded in suspension-cultured tomato cells treated with the general elicitors 

N,N',N'',N'''-tetraacetyl-chitotetraose, xylanase, and the flagellin-derived peptide flg22 

[54]. In rice cells, the PA amount increased rapidly after treatment with N-

acetylchitooligosaccharide elicitor [55]. Moreover, the PA increase is likely to occur 

upstream of the oxidative burst [53,55]. Furthermore, method of PA assessment. 

Furthermore, all these studies point out the rapid accumulation of PA upon treatments, 

generally within minutes. According to [16], signaling lipids, unlike structural lipids, are 

present only in minute amounts, yet their levels increase rapidly in response to certain 

stimuli. Such an accumulation is transient because the signal is rapidly down regulated. 

However, none of these characteristics, namely the rapid and transient accumulation 

upon treatment, met our results. SA induces a PA accumulation that occurred not earlier 

than 24 h after SA infiltration and seemed to last for at least 4 days. This result, that does 

not match the general trend, may be explained by a late induction of one or both of the 

phospholipases pathways leading to PA formation. Since the magnitude of PA change 

varies upon the treatment, tissue and method of PA assessment [17], our findings could be 

attributed to the treatment and/or to the tissue nature - infiltration of SA and PA 

assessment in planta - whereas most of the studies are conducted on cellular cultures. 



 
Lipids as Markers of Induced Resistance in Wheat: A Biochemical and Molecular Approach 371 

3.2. PLC gene expression is up-regulated and DAG content increases in SA-

infiltrated leaves 

In order to corroborate the PA formation with the PLC-DGK pathway activation, the 

expression of the PLC gene, encoding a phospholipase C, was measured over the time-

course experiment, compared to the water-infiltrated wheat leaves, and normalized to two 

reference genes, tub and ef1α, encoding tubulin and elongation factor, respectively (Figure 

5). The expression pattern of the PLC gene consisted of three up-regulations: 3.5 and 4.8-fold 

increases were induced at 9 and 21 hai, respectively. Furthermore, this gene expression was 

strongly increased from 48 till 96 hai, with an average of 9-fold increase over this period. 

This late high up-regulation of PLC gene correlates with the late PA detection in wheat 

leaves between 48 and 96 h after SA infiltration. The accumulation of PA is probably due to 

this pathway’s stimulation after PLC gene’s expression and synthesis of the corresponding 

enzyme.  

 

Figure 5. PLC gene expression in wheat leaves infiltrated with SA 

PA formation through the phospholipase C pathway results from two enzymes acting 

sequentially: PLC hydrolyses phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2, also 

abbreviated as PIP2] into inositol-1,4,5-trisphosphate [Ins(1,4,5)P3] and DAG. DAG remains 

in the membrane and is rapidly phosphorylated to PA by DGK (Figure 1). The variation in 

DAG levels in SA-infiltrated wheat leaves is presented in table 2. During the first 24 h after 

SA infiltration, no clear variation pattern in DAG content was observed. However, SA 

induced the accumulation of DAG from 24 till 96 hai, with a maximum of 2.18-fold increase 

at 72hai. Interestingly, DAG accumulation, as well as PLC gene expression, was recorded in 

the same period of the time-course experiment, 24 till 96 h after SA infiltration. The DAG 

accumulation seems to be the consequence of the induction of PLC gene expression.  

Twenty four hours after infiltration, SA induces the expression of PLC-encoding gene, 

simultaneously with an accumulation of DAG and PA. One could think that DAG content 

must decrease in order to fulfill PA formation; indeed, the contribution of DAG could only 
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be confirmed by the investigation of DGK activity. Even if the subsequent enzymatic 

conversion of DAG doesn’t lead to PA formation, one must keep in mind that the hydrolysis 

of PtdIns(4,5)P2 into Ins(1,4,5)P3 is of a great interest since the latter diffuses into the cytosol 

where it possibly triggers calcium flux/release from intracellular stores [20].   

In addition, the simultaneous increase of these compounds could be due to the durable PLC 

gene expression, ensuring a continuous supply of DAG to be phosphorylated to PA. 

 

 Time after SA infiltration 

 6h 12h 18h 24h 48h 72h 96h 

DAG content 
1.1-fold 

increase 

1.1-fold 

decrease 
Ø 

1.26-fold 

increase 

1.62-fold 

increase 

2.18-fold 

increase 

1.56-fold 

increase 

Table 2. Variation in DAG level in SA-infiltrated wheat leaves compared to the control 

3.3. PE and PC contents vary in SA-infiltrated leaves 

PA could also be generated by the phospholipase D pathway which hydrolyzes structural 

membrane phospholipids such as PE and PC (Figure 1). The variations of PE and PC levels in 

SA-infiltrated leaves compared to the control are presented in table 3. While accumulation of PC 

was observed during the whole time-course experiment (except for 24 and 96 hai), PE 

accumulated the first 18h after treatment. Afterward, SA induced a decrease in the PE content 

between 24 and 96 hai, with a maximum decrease at 48 and 72 hai. These results match the 

increased PA level in SA-infiltrated wheat leaves in the same period, suggesting that this 

pathway is involved in PA formation.  Since PC level was maintained and even increased, this 

phospholipid doesn’t seem to be involved in PA production, under SA treatment. The PE/PC 

ratio is also reduced from 48 till 96 hai. Substantial alterations in the lipid composition of plasma 

membrane are a widely known process to stress adaptation, such as water deficit: the PC/PE 

ratio changed from 1.1 in plants non-acclimated to water stress to 0.69 in acclimated ones [56]. 

 

Time after SA infiltration 

 6h 12h 18h 24h 48h 72h 96h 

PE 

content 

1.4-fold 

increase 

1.3-fold 

increase 
Ø 

1.3-fold 

decrease 

6.6-fold 

decrease 

6.2-fold 

decrease 

2.3-fold 

decrease 

PC 

content 

1.4-fold 

increase 

2.9-fold 

increase 

3.8-fold 

increase 
Ø 

1.8-fold 

increase 

1.4-fold 

increase 
Ø 

PE/PC 2 1.2 1.2 2.2 0.2 0.5 0.6 

Table 3. Variations in PE and PC levels (compared to the control) and PE/PC ratio induced in SA-

infiltrated wheat leaves 

In conclusion, SA seems to induce the formation of PA through the activation of 

phospholipases C and/or D pathways. In Arabidopsis, PLC signaling is involved in some 
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responses mediated by ABA without any contribution of DGK activity or PA [57]. This 

signaling, via Ins(1,4,5)P3, is also reported as an early response to salinity and hyperosmotic 

stress [58,59]. The PLC-DGK pathway was sought in Arabidopsis after cold exposure [60], in 

transgenic tobacco cells upstream the oxidative burst as in [53] and after contact with 

pathogens. In suspension-cultured alfalfa cells, the nod factor activates this pathway [61].  

Treatment of tomato cell cultures with the fungal elicitor xylanase resulted in a rapid and 

dose-dependent nitric oxide (NO) accumulation, required for PA production via the 

activation of PLC-DGK pathway. PA and, correspondingly, xylanase were shown to induce 

ROS production [62]. 

The PLD pathway is involved in every mentioned stress signaling, except cold-induced 

stress. Several Arabidopsis PLDs were found to be induced in response to Pseudomonas 

infection [63]. The PLD pathway contribution was also found in Arabidopsis upon drought 

[64], ethylene treatment [65], freezing [66] and wounding [67,68].  

Moreover, signaling lipids can affect the activity of target enzymes. In [69], the authors 

showed an activation of a calcium-dependent protein kinase DcCPK1 by PA in Daucus 

carota. In Arabidopsis, the activation of AtPDK1, a protein kinase, target of PLD-generated 

PA, is involved in root hair growth [70]; the PLD-derived PA also interacts with ABI1 

phosphatase and regulates ABA signaling [71].   

All together, these results are the first evidence for SA as an inducer of PA formation in 

wheat leaves. Increases in PA levels in SA-treated wheat leaves seem to be highly related to 

the induction of plant genes encoding phospholipases that are involved in the synthesis or 

release of PA. 

3.4. LOX gene expression and LOX activity are enhanced upon SA-infiltration 

In the present experiments, the lox gene expression showed a 12 and 14-fold increase at 9 

and 21 hai respectively, in SA-infiltrated leaves. This gene expression was also strongly 

induced later, with a 166 and 156-fold increase at 48 and 96 hai respectively (Figure 6).  

In grapevine plantlets, rhamnolipids induced for lox gene expression a 7-fold increase 24 h 

after immersion in the rhamnolipids solution [72]. In wheat, transcripts of WCI-2 (Wheat 

Chemically Induced gene) gene, which encodes a lipoxygenase, accumulated quickly in 

response to MeJA, SA and BTH treatments (from 2 h to 24h for MeJA, and from 4h and to 20 

h for the other elicitors); however, SA induced this gene’s expression to a lesser extent than 

the other two compounds [73]. The contribution of SA to early signaling events by the 

stimulation of lipoxygenase-encoding genes is therefore established. Nevertheless, the 

authors didn’t record any accumulation of the transcripts of WCI-2 gene the first 24 h after 

wheat seedlings inoculation with Bgt nor Bgh (incompatible interaction). However, 

accumulation of these transcripts was found in latter stages of wheat infection with 

powdery mildew. In infectious conditions, the lox gene seemed to be expressed quite late 

[74]. Infiltration with SA reproduced a similar lox-encoding transcripts profile with a late 

up-regulation of the lox gene to a 166 and 156-fold increase at 48 and 96 hai, respectively. 
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Figure 6. lox gene expression in wheat leaves treated with SA 

Figure 7 shows the LOX activity in leaf extracts at 6, 12, 18, 24, 48, 72 and 96 h after SA 

infiltration in comparison to water-infiltrated leaves. During the first 48h, the LOX activity 

was decreased in SA-infiltrated leaves. However, SA induced significant 1.7 and 3.8-fold 

increases in LOX activity at 72h and 96hai, compared to the control. 

 

Figure 7. Time-course activity of LOX in water and SA-infiltrated wheat leaves. Data represent means 

of 3 independent experiments. Bars with an asterix are different from water control plantlets as 

determined by ANOVA followed by a multiple range test (LSD) (P<0.05). 

When compared together, profiles of lox gene expression and LOX activity in SA-infiltrated 

leaves show interestingly that the first lox up-regulations, 24 h after SA infiltration, are not 

followed by the corresponding enzymatic activity. Induction of LOX activity by SA was only 

detectable after lox transcripts accumulation was the most important, between 48 and 96hai.  
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In non-infectious context, the induction of a LOX activity was also assessed in wheat by 

Renard-Merlier et al. [8]. Wheat sprayings with HSA enhanced a 1.5-fold increase in LOX 

activity, compared to corresponding ethanol control, only 96 h after treatment. Thus, 

infiltration of SA as well as HSA sprayings induced similar LOX enzymatic activity profile. 

However, these authors didn’t report any significant difference in LOX activity between 

control and SA-sprayed leaves over the 4 days after treatment. This finding highlights the 

effect of SA functionalization, probably improving the penetration of HSA through the 

hydrophobic plant cuticle. Moreover, HSA, which increased the protection level against Bgt 

from 50% in SA-treated wheat leaves to 95%, induced an 8-fold increase of the LOX activity 

in inoculated conditions.  

LOX-derived products such as hydroperoxy, hydroxyl and keto fatty acids accumulate in 

plants in response to attack by pathogens and treatment with inducers of plant defence 

responses [75]. For example, in A. thaliana, infection by P. syringae causes accumulation of 

ketodienoic fatty acids in A. leaves as well as the cell death and induces expression of the 

GST1 gene, which encodes a glutathione-S-transferase [76]. In another study, SA treatment 

was shown to cause the accumulation of 13 (S)-hydroxyoctadecatrienoic acid (13-HOTrE) in 

barley leaves, and application of 13-HOTrE induces the expression of the PR1B gene, 

suggesting the involvement of 13-HOTrE in SA signaling in barley [77]. One must keep in 

mind that the primary products of PUFAs enzymatic oxidation are often converted to 

oxylipins such as JA. In barley leaves, 13-HOD and 13-HOT (hydroxyl PUFAs after 

reductase on HPOD and HPOT respectively) accumulated suggesting that the reductase 

branch of the LOX pathway is the object of preferential induction upon SA treatment, 

among the various metabolic transformations of the LOX-derived 13-HPOT or 13-HPOD. 

No accumulation of other LOX pathway-products was observed. SA as well as 13-HOT 

induced PR1 gene expression, 48h after treatment. In barley leaves, at least one specific LOX 

is transcriptionnaly activated by SA and JA. This LOX-100 is a 13-LOX located in the 

chloroplast. However, this LOX-100 gene was not expressed upon infection with powdery 

mildew in susceptible and non-susceptible barley lines [78]. The co-induction of LOX and 

PR1 by SA suggests a role in plant defense reaction. 

3.5. FAs content varies in resistance inducers-treated wheat plants 

3.5.1. Total FAs content vary in trehalose, Iodus40, Milsana and HSA-treated wheat leaves 

In wheat, Renard-Merlier et al. [46] conducted a global investigation of total FA content 

in relation to treatment with four inducers of resistance and to powdery mildew 

infection.  

Table 4 presents a summary of the observed variations of several FAs content at the 

quantitative and qualitative levels induced by the four tested resistance inducers and these 

results are now discussed on the basis of the most recent literature as well as our results 

presented above. 
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 C12:0 C18:1 18:2 C20:2 

 quantitative qualitative quantitative qualitative quantitative qualitative quantitative qualitative 

Trehalose         

ni Ø Ø Ø Ø Ø Ø Ø Ø 

i 
4.0-fold 

increase 

2.4-fold 

increase 
Ø Ø Ø Ø Ø 

1.3-fold 

decrease 

Iodus 40         

ni Ø Ø 
1.2-fold 

increase 

2.2-fold 

increase 
Ø Ø 

1.5-fold 

decrease 

1.33-fold 

decrease 

i 
2.8-fold 

increase 

1.5-fold 

increase 
Ø Ø Ø Ø Ø Ø 

Milsana         

ni Ø Ø Ø Ø Ø Ø 
2.3-fold 

decrease 
Ø 

i 
4.8-fold 

increase 

1.5-fold 

increase 
Ø Ø Ø Ø 

1.8-fold 

decrease 

2.0-fold 

decrease 

HSA         

ni Ø Ø Ø Ø Ø 
1.15-fold 

increase 
Ø Ø 

i Ø Ø Ø Ø 
1.6-fold 

increase 

1.15-fold 

increase 
Ø Ø 

Table 4. Summary of variations observed in C12:0, C18:1, C18:2 and C20:2 content at the quantitative 

(μg.mg -1 dry weight) and qualitative (percentage of total FAs) levels induced by inoculation, trehalose, 

Iodus 40®, Milsana® or HSA sprayings. These variations are observed 4 days after sprayings in non 

inoculated (ni) plants and 2 days post inoculation in inoculated (i) conditions 

Lauric acid (C12:0) content quantitatively increased after Iodus 40® (2.8-fold), Milsana® 

(4.8-fold) and trehalose (4-fold) treatment in (i) plants (2 days after inoculation). In [79], the 

authors showed that Vicia sativa seedlings treated with MeJA exhibit an increase in lauric 

acid ω-hydroxylase activity, an enzyme that converts C12:0 into hydroxylated forms 

potentially involved in cutin monomer synthesis. Moreover, C12:0 itself has several relevant 

biological properties such as antifungal, antiviral, antiparasite and antibacterial activities 

[80,81]. However, none of the four compounds induced any variation in C12:0 level in non-

infectious conditions. Since no elicitation was observed in this context, priming effect on 

C12:0 accumulations could be proposed for these resistance inducers in wheat against Bgt. 

Contents of C20:2 (eicosadienoic acid) decreased in Iodus 40®- and Milsana®-treated (ni) 

plants compared to the corresponding controls (4 days after treatment). The decrease was 

confirmed at the qualitative level only for Iodus 40®. In (i) conditions, only Milsana® 

induced a significant decrease in C20:2 content at both levels whereas TR induced a decrease 

perceptible at the qualitative level only. In (i) plants, C20:2 increased (data not shown). 

C20:2 content seemed to be affected by fungal infection of the plant to a greater extent than 

by any of the resistance inducing treatments, since similar quantities were found in water-

control (i) plants as well as in resistance inducers-treated plants. The link between C20:2 and 

infection was also reported in [82].Transgenic A. thaliana plants producing C20:2 exhibited 
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enhanced resistance to the aphid Myzus persicae, the fungal pathogen Botrytis cinerea and to 

the oomycete pathogen Phytophtora capsici. 

C18:1 (oleic acid) in Iodus 40®-treated (ni) plants showed a quantitative 1.2 fold-increase. 

C18:1, as well as other C18 and C16 FAs, are well known substrates for cutin monomer 

synthesis [83]. One could suggest that Iodus 40®, by stimulating the accumulation of this 

FA, contributes to the reinforcement of the plant cuticule prior to fungal contamination. In 

cultured parsley cells, a biphasic time-course for C18:1 increase was obtained upon 

treatment with peptidic or fungal elicitors [84]. In [85], the authors suggested that 

chloroplastic C18:1 level is critical for normal pathogen defense responses in Arabidopsis, 

including programmed cell death and systemic acquired resistance (SAR). In [86], it was 

shown that the oleic acid-mediated pathway induces constitutive defense signaling and 

enhances resistance to multiple pathogens in soybean. C18:1 and linoleic (18:2) acid levels, in 

part, regulate fungal development, seed colonization, and mycotoxin production by 

Aspergillus spp. [87]. Direct antifungal activity has also been reported for C18:1, since it 

inhibits, in a dose-dependent manner, the germination of Erysiphe polygoni spores [88]. 

The amount of C18:2 increased (1.6-fold) 4 days after HSA treatment in (i) plants. For C18:2, 

the accumulation in sorbitol-treated barley leaves was reported from 12 h till 72h after 

treatment [89]. Cold acclimating potato was found to accumulate linoleic acid (18:2) in the 

membrane glycerolipids of the leaves [90]. C18:2 is also a substrate for cutin monomer 

synthesis and can therefore contribute to cuticle reinforcement.  

Among the four inducers tested, Iodus40® had the largest effects on FA levels, since it 

increased C12:0 and C18:1 and decreased C20:2. This product, which active ingredient is 

laminarin (polysaccharide), induced decreases in lipid peroxydation level all over the time-

course experiment [8]. 

Trehalose and Milsana® had similar effects on FAs profile with induced increases in C12:0 

and decreases in C20:2 contents. However, TR and Milsana® modes of action are quite 

different in the wheat-powdery mildew interaction. TR activates phenylalanine ammonia-

lyase (PAL) and peroxydase activity and enhances papilla autofluorescence and H2O2 

accumulation. However, it does not affect catalase (CAT), cinnamyl alcohol dehydrogenase 

(CAD), LOX or oxalate oxidase (OXO) activities, and does not alter lipid peroxide levels [8]. 

According to the authors in [10], treatments of wheat with Milsana® enhance H2O2 

accumulation at the fungal penetration site without any possible correlation with the 

activation of enzymes involved in ROS metabolism. Only LOX, involved in both ROS 

regulation and lipid peroxidation, showed a 26 to 32% increase 48h postreatment in 

Milsana-infiltrated leaves. This weak effect of Milsana® on wheat lipid metabolism was 

confirmed at the lipid peroxydation level, which was shown to decrease in treated plants.  

While HSA sprayings enhanced an increase in C18:2 levels only, HSA exhibited the most 

numerous and the highest effects in the wheat-powdery mildew interaction. HSA induced 

H2O2 accumulation, increases LOX activity in (i) conditions and decreases CAT activity in 

(ni) context [8]. 
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While barley leaves treated with salicylate [77], sorbitol [89] or JA [91] accumulated C18:3, 

none of the 4 compounds tested induced any increase in C18:3 in wheat leaves according to 

our results. 

3.5.2. Free FAs and PLFAs content vary in SA-infiltrated wheat leaves 

The profile of free FAs and phospholipids FAs (PLFAs) in SA-infiltrated wheat leaves were 

also investigated and are presented in Table 5 and Table 6. 

 

 C16:0 C18:0 C18:1 C18:2 C18:3 

μg/mg dry 

weight 

2.38-fold 

increase 

(48-96hai) 

2.36-fold increase

(48-96hai) 

2-fold 

increase 

(48-96hai) 

Ø 

2.74-fold 

decrease 

(6-96hai) 

% 

1.4-fold 

increase 

(6-96hai) 

1.47-fold increase

(6-96hai) 
Ø Ø 

2.3-fold 

decrease 

(6-96hai) 

Table 5. Variations in free FAs content and % in SA-infiltrated leaves 

 

 C16:0 C18:0 C18:1 C18:2 C18:3 

μg/mg dry 

weight 

1.5-fold 

increase 

(48-72hai) 

1.9-fold 

increase 

(6-96hai) 

Ø 

2.7-fold 

decrease 

(72-96hai) 

2.28-fold 

decrease 

(24-96hai) 

% 

1.6-fold 

increase 

(48-96hai) 

2.5-fold 

increase 

(24-96hai) 

Ø Ø 

1.27-fold 

decrease 

(24-96hai) 

Table 6. Variations in PLFAs content and % in SA-infiltrated leaves 

Upon treatment with SA, free palmitic acid (C16:0) accumulation was observed from 48 till 

96 hai with an average of 2.38 fold-increase over this period and 1.4-fold increase at the 

qualitative level over the whole time-course experiment. Similar results were observed for 

the PLFAs C16:0, essentially the last 3 days of the experiment. Since monomers of cutin are 

synthesized C16:0, SA seems to induce the reinforcement of the plant cuticule. In A. thaliana, 

levels of the C16:3 (hexadecatrienoic acid) increase within a few hours of exposure to an 

avirulent strain of P. syringae [92]. 

Increases in both classes of stearic acid C18:0 content and percentage were observed in SA-

infiltrated leaves. In soybean, increased levels of C18:0 likely inhibit soybean seed 

colonization by the seed-borne pathogen Diaporthe phaseolorum [93].  

A transient 2-fold increase in free FAs C18:1 content was recorded. A sharp and rapid 

increase in C18:1 level was observed in parsley cells treated with a fungal elicitor [83]. 

Recent studies suggest that free oleic acid (18:1) levels in the chloroplast regulate the defense 

response of plants to pathogens including programmed cell death and SAR [94]. 
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A 2,7-fold decrease in C18:2 PLFAs was observed 72 till 96 hai of SA. In sorbitol-treated 

barley leaves, the accumulation of C18:2 occurred from 12 h till 72h after treatment [89]. The 

development of asexual spores, and the formation of cleistothecia and sclerotia of Aspergillus 

spp are affected by C18:2 and light [95]. Avocado fruits infected with Colletotrichum 

gleosporioides spores accumulate C18:2 [96]. 

One of the most interesting results is the general decrease of C18:3 level after SA-infiltration. 

Most of the studies report increases in 18:3 levels such in suspension cells of California 

poppy (Eschscholtzia californica) treated with a yeast elicitor [97]. In A. thaliana, an increase of 

C18:3 occurred within a few hours of exposure to an avirulent strain of P. syringae [91]. The 

Arabidopsis fad7 fad8 mutant defective in the generation of C18:3 in chloroplastic membranes 

is deficient in ROS production following infection with avirulent strains of Pseudomonas 

syringae and shows enhanced susceptibility to this pathogen [92]. C18:3 stimulates NADPH 

oxidase activity in vitro, which suggests that C18:3 modulates ROS production and the 

subsequent defense responses during R gene–mediated resistance in plants [92].  The 

Arabidopsis fad3 fad7 fad8 triple mutant is unable to accumulate JA because of a deficiency in 

C18:3 and is highly susceptible to infection by insect larvae [98]. The fad3 fad7 fad8 mutant 

plants are also highly susceptible to root rot by Pythium jasmonium, and this susceptibility 

can be alleviated by the exogenous application of MeJA [99]. Rhizobacteria-induced 

enhanced resistance to Botrytis cinerea is associated with the accumulation of C18:2 and 

C18:3 FAs in bean [100].  

In barley leaves, 13-LOX are induced by SA and jasmonates. Upon SA treatment, free 

C18:3 and C18:2 accumulate in a 10:1 ratio reflecting their relative occurrence in leaf 

tissues [78]. The release of 18:3 from plant membrane lipids by stress-activated lipases is 

thought to provide the substrate for lipoxygenase and subsequent octadecanoid (oxylipin) 

pathway synthesis of JA and methyl jasmonate [101,102]. JA and methyl jasmonate 

participate in the signal regulation of a number of plant processes including wound and 

pathogen defense responses. Efforts have been successful to identify and characterize 

fatty acids esterifying lipases that are activated by pathogen attack and/or environmental 

stress. Results suggest that both A1 and A2 phospholipases are involved in 18:3 

mobilization form membrane lipids [103]. In the C4 monocotyledon sorghum (Sorghum 

bicolor L.), SA induced genes of the octadecanoic acid pathway for JA synthesis which 

resulted in higher JA content [104]. 

However, in tobacco tissues expressing a hypersensitive response to TMV, an increase in the 

saturation of fatty acids contained in the microsomal phospholipids was observed while 

C18:3 content decreased by 9% [105]. Interestingly, the authors credited the change of FAs 

composition to a four-fold increase in LOX activity of the infected tobacco tissues. 

The decreases in free FAs observed with our model could be explained by a rapid 

dioxygenation via LOX activity. Furthermore, accumulation of C16:0 and C18:0 coupled 

with no significant increase in C18:1 means that elongation of C16:0 into C18:0 is not 

followed by desaturation into C18:1, C18:2 and finally, C18:3. Such results could explain the 

reduced content level of C18:3. 
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3.6. ltp gene expression is induced by SA infiltration 

The effect of SA on the expression of a lipid transfer protein-encoding gene ltp was also 

conducted according to the same time-course experiment (figure 8). SA induced a biphasic 

ltp expression pattern: a 1.7-fold increase at 9hai followed by an average of 4.6-fold increase 

between 48 and 96hai.  

The LTPs extracellular distribution in the exposed surfaces in vascular tissue systems, 

high abundance and corresponding genes expression in response to infection by 

pathogens suggest that they are active plant-defense proteins [106]. A combined 

expression of chitinase and LTP-encoding genes in transgenic carrot plants enhances 

resistance to Botrytis sp. and Alternaria sp. [107]. A high global expression of an ltp gene in 

resistant wheat to Tilletia tritici was identified [108]. The nonspecific nsLTP-encoding gene 

expression profile was evaluated in grape cells suspension in response to various defense-

realted signal molecules [109]. A rapid and strong accumulation of nsLTPs mRNAs was 

recorded upon treatment with ergosterol (5h after treatment with hybridation signal more 

than 300X A.U.) whereas JA, cholesterol and sitosterol promoted an accumulation but to a 

lesser extent (hybridation signal between 100 and 200X). However, SA had no effect on 

nsLTPs mRNAs accumulation.  

 

Figure 8. ltp gene expression in wheat leaves treated with SA 

Moreover, LTPs are known to be differentially expressed during a pathogenic interaction 

because they are potentially good ligands to oleic C18:1, linoleic C18:2 and eicosadienoic 

acids C20:2 [110]. Among 28 identified wheat nsLTP, eight nsLTP expressed in yeast 

exhibited lipid binding activity [111]. These proteins could be involved in the intracellular 
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traffic of phospholipids and in the transport of cutin monomers. Interestingly, SA induces 

the expression of the ltp gene in the same period when its impact on the lipid metabolism is 

the most important. One could think that the lipid transfer capacity of these binding 

proteins participate in the modulation of the lipid scenery upon resistance induction with 

SA.   

4. Conclusion 

The present chapter provides evidences for the effect of resistance inducers on wheat lipid 

metabolism and presents the strategy we used in order to characterize their mode of action 

at different levels: total FA content and relative proportion, PA, PE and DAG contents, 

expression of genes such as PLC and LTP-encoding ones. Lipid metabolism is therefore a 

marker of induced resistance in wheat. To our knowledge, such findings have never been 

presented before on Triticum aestivum.   

Salicylic acid is very likely to induce the formation of PA through the activation of 

phospholipases C and/or D pathways: induction of PLC gene expression, together with 

DAG accumulation suggests that the PLC pathway is enhanced and leads to PA production. 

On the other hand, reduction of PE content suggests that PLD pathway is triggered upon SA 

infiltration in order to ensure PA synthesis. lox gene expression up-regulation and 

corresponding enzymatic activity, along with the decrease of linolenic acid content, suggests 

that SA modulates lipid enzymatic peroxidation. Moreover, the expression of ltp gene was 

induced by SA, showing the involvement of the corresponding protein in the lipid signaling 

metabolism.   

The tested resistance inducers had some similarities in their mode of action, relatively to 

total FAs profiles. Trehalose and Milsana® seem to share similar modes of action via the 

increase of C12:0 and decrease of C20:2 contents. Iodus® exhibited the largest effects on FAs 

profiles, inducing increases in C12:0 and C18:1 and decreases in C20:2. HSA, however, was 

the only resistance inducer that modulated positively the content of C18:2. 

Future investigations have to be extended to other genes expression and corresponding 

enzymatic activities acting downstream of lipoxygenase in order to figure out whether the 

LOX-derived hydroperoxides are metabolized during the JA synthesis. Furthermore, a 

global approach using microarrays based on wheat cDNA chips would be a useful tool for 

increasing our knowledge of the plant lipidome in our wheat-powdery pathosystem. 
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