173 research outputs found

    ANALYTICAL RESULTS FOR MOX COLEMANITE CONCRETE SAMPLES RECEIVED ON JANUARY 15, 2013

    Get PDF
    The Mixed Oxide Fuel Fabrication Facility (MFFF) will use colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses and shielding operators from radiation. The Savannah River National Laboratory (SRNL) is tasked with measuring the total density, partial hydrogen density, and partial boron density of the colemanite concrete. SRNL received twelve samples of colemanite concrete for analysis on January 15, 2013. The average total density of each of the samples measured by the ASTM method C 642, the average partial hydrogen density was measured using method ASTM E 1311, and the average partial boron density of each sample was measured according to ASTM C 1301. The lower limits and measured values for the total density, hydrogen partial density, and boron partial density are presented. For all the samples tested, the total density and the hydrogen partial density met or exceeded the specified limit. All of the samples met or exceeded the boron partial density lower bound with the exception of samples G3-M11-2000-H, G3-M11-3000-M, and G5-M1-3000-H which are below the limit of 1.65E-01 g/cm3

    The Role of Artificial Structures in Facilitating Range Expansion of the Introduced Barnacle Megabalanus Coccopoma in the Southeastern U.S.A.

    Get PDF
    The barnacle Megabalanus coccopoma is a recent invader of the southeastern U.S.A. from the tropical eastern Pacific. In Georgia, M. coccopoma populations along the immediate coastline often suffer extensive mortality during the winter, but population rebuilding is common after these events suggesting that there may be nearby larval sources. I investigated the hypothesis that artificial structures (i.e., buoys, towers), occurring far enough offshore of Georgia for water temperatures to be moderated by the Gulf Stream, provide refuges for breeding adults of M. coccopoma and can serve as the larval source. I investigated this hypothesis by first developing thirteen microsatellite primer pairs specific to M. coccopoma. I also developed the polymerase chain reaction (PCR) and sequencing protocols for use with the primers. These 13 primer pairs were tested on 42 individuals from two populations of M. coccopoma. The results indicated high allelic diversity in all of the loci making these primers useful in evaluating population genetics questions related to M. coccopoma. To further evaluate the role of artificial structures in the range expansion of M. coccopoma, I collected demographic information on existing populations, monitored temperature and salinity both on and offshore, and assessed genetic diversity and structure at 8 research sites ranging from the shoreline to ~50km offshore in the southeast. Demographic information and abiotic parameter monitoring indicated that offshore artificial structures are suitable habitats for M. coccopoma adults and these structures also house M. coccopoma populations that are composed of stable, mature individuals that can serve as an abundant source of larvae. The genetic assessment revealed high allelic diversity and significant deviations from Hardy-Weinberg Equilibrium (HWE) in all subpopulations. The analysis of genetic structure indicated that the M. coccopoma population in the Georgia Bight is panmictic and suggested that a Wahlund Effect is acting to increase allelic diversity and causing HWE deviations. The combined results support my hypothesis that offshore structures in the Georgia Bight can act as refuges for breeding adults, however there are likely additional larval sources from beyond the region examined that are facilitating the range expansion of M. coccopoma in the southeastern U.S.A

    RESULTS FOR THE THIRD QUARTER 2011 TANK 50 WAC SLURRY SAMPLE: CHEMICAL AND RADIONUCLIDE CONTAMINANT RESULTS

    Get PDF
    The Saltstone Facility is designed and permitted to immobilize and dispose of low-level radioactive and hazardous liquid waste (salt solution) remaining from the processing of radioactive material at the Savannah River Site. Low-level waste (LLW) streams from the Effluent Treatment Project (ETP), H-Canyon, and the decontaminated salt solution product from the Actinide Removal Process/Modular Caustic Side Solvent Extraction (CSSX) Unit (ARP/MCU) process are stored in Tank 50 until the LLW can be transferred to the Saltstone Facility for treatment and disposal. The LLW must meet the specified waste acceptance criteria (WAC) before it is processed into saltstone. The specific chemical and radionuclide contaminants and their respective WAC limits are in the current Saltstone WAC. Waste Solidification Engineering (WSE) requested that Savannah River National Laboratory (SRNL) perform quarterly analysis on saltstone samples. The concentrations of chemical and radionuclide contaminants are measured to ensure the saltstone produced during each quarter is in compliance with the current WAC. This report documents the concentrations of chemical and radionuclide contaminants for the 2011 Third Quarter samples collected from Tank 50 on July 7, 2011 and discusses those results in further detail than the previously issued results report

    RESULTS FOR THE FOURTH QUARTER 2010 TANK 50 WAC SLURRY SAMPLE: CHEMICAL AND RADIONUCLIDE CONTAMINANT RESULTS

    Get PDF
    This report details the chemical and radionuclide contaminant results for the characterization of the 2010 Fourth Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC). Information from this characterization will be used by Liquid Waste Operations (LWO) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System. The following conclusions are drawn from the analytical results provided in this report: (1) The concentrations of the reported chemical and radioactive contaminants were less than their respective WAC targets or limits unless noted in this section. (2) The reported detection limits for {sup 94}Nb, {sup 247}Cm and {sup 249}Cf are above the requested limits from Reference 2. However, they are below the limits established in Reference 3. (3) There is an estimated concentration of trimethylbenzene (2.25 mg/L). This is not a WAC analyte, but it is the first time this organic compound has been detected in a quarterly WAC sample from Tank 50. (4) The reported detection limit for Norpar 13 is greater than the limit from Table 4 and Attachment 8.2 of the WAC. (5) The reported detection limit for Isopar L is greater than the limit from Table 3 of the WAC. (6) Isopar L and Norpar 13 have limited solubility in aqueous solutions making it difficult to obtain consistent and reliable sub-samples. The values reported in this memo are the concentrations in the sub-sample as detected by the GC/MS; however, the results may not accurately represent the concentrations of the analytes in Tank 50

    Reducing host DNA contamination in 16S rRNA gene surveys of anthozoan microbiomes using PNA clamps

    Get PDF
    Efforts to study the microbial communities associated with corals can be limited by inefficiencies in the sequencing process due to high levels of host amplification by universal bacterial 16S rRNA gene primers. Here, we develop an inexpensive peptide nucleic acid (PNA) clamp that binds to a target sequence of host DNA during PCR and blocks amplification. We then test the ability of this PNA clamp to mitigate host contamination and increase overall microbial sequence coverage on samples from three coral species: the gorgoniansEunicea flexuosaandGorgonia ventalina,and the scleractinianPorites panamensis. The 20-bp PNA clamp was designed using DNA fromE. flexuosa. Adding the PNA clamp during PCR increased the percentage of microbial reads inE. flexuosasamples more than 11-fold. Microbial community diversity was similar without- and with-PNA clamps, as were the relative frequencies of the ten most abundant ASVs (amplicon sequence variants), indicating that the clamps successfully blocked host DNA amplification while simultaneously increasing microbial DNA amplification proportionally across the most abundant taxa. The reduction ofE. flexuosaDNA correlated with an increase in the abundance of rarer taxa. The clamp also increased the average percentage of microbial reads in another gorgonian,G. ventalina,by 8.6-fold without altering the microbial community beta diversity, and in a distantly related scleractinian coral,P. panamensis,by nearly double. The reduction of host contamination correlated with the number of nucleotide mismatches between the host amplicon and the PNA clamp. The PNA clamp costs as little as $0.48 per sample, making it an efficient and cost-effective solution to increase microbial sequence coverage for high-throughput sequencing of coral microbial communities. Keyword

    Analytical Results For MOX Colemanite Concrete Samples Received On September 4, 2013

    Get PDF
    The Mixed Oxide Fuel Fabrication Facility (MFFF) will use colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses and shielding operators from radiation. The Savannah River National Laboratory (SRNL) is tasked with measuring the total density, partial hydrogen density, and partial boron density of the colemanite concrete. SRNL received three samples of colemanite concrete for analysis on September 4, 2013. The average total density of each of the samples measured by the ASTM method C 642, the average partial hydrogen density was measured using method ASTM E 1131, and the average partial boron density of each sample was measured according to ASTM C 1301. The lower limits and measured values for the total density, hydrogen partial density, and boron partial density are presented. For all the samples tested, the total density and the boron partial density met or exceeded the specified limit. None of the samples met the lower limit for hydrogen partial density

    RESULTS FOR THE SECOND QUARTER 2010 TANK 50 WAC SLURRY SAMPLE: CHEMICAL AND RADIONUCLIDE CONTAMINANT RESULTS

    Get PDF
    This report details the chemical and radionuclide contaminant results for the characterization of the 2010 Second Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC).1 Information from this characterization will be used by Liquid Waste Operations (LWO) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System. The following conclusions are drawn from the analytical results provided in this report: (1) The concentrations of the reported chemical and radioactive contaminants were less than their respective WAC targets or limits unless noted in this section. (2) The reported detection limits for {sup 94}Nb and {sup 144}Ce are above both the established and requested limits from References 4 and 6. (3) The reported detection limits for {sup 247}Cm and {sup 249}Cf are above the requested limits from Reference 4. However, they are below the limits established in Reference 6. (4) The reported detection limit for Isopar L is greater than the limit from Table 3 of the WAC. (5) A measurable concentration of Norpar 13 is present in the sample. The reported concentration is greater than the requested limit from Table 4 and Attachment 8.2 of the WAC. (6) Isopar L and Norpar 13 have limited solubility in aqueous solutions making it difficult to obtain consistent and reliable sub-samples. The values reported in this memo are the concentrations in the sub-sample as detected by the GC/MS; however, the results may not accurately represent the concentrations of the analytes in Tank 50. (7) The detection limit for isopropanol has been lowered from 0.5 mg/L to 0.25 mg/L{sup 7}. This revised limit now satisfies the limit in Table 4 of the WAC

    ANALYSIS OF THE SALT FEED TANK CORE SAMPLE

    Get PDF
    The Saltstone Production Facility (SPF) immobilizes and disposes of low-level radioactive and hazardous liquid waste (salt solution) remaining from the processing of radioactive material at the Savannah River Site (SRS). Low-level waste (LLW) streams from processes at SRS are stored in Tank 50 until the LLW can be transferred to the SPF for treatment and disposal. The Salt Feed Tank (SFT) at the Saltstone Production Facility (SPF) holds approximately 6500 gallons of low level waste from Tank 50 as well as drain water returned from the Saltstone Disposal Facility (SDF) vaults. Over the past several years, Saltstone Engineering has noted the accumulation of solids in the SFT. The solids are causing issues with pump performance, agitator performance, density/level monitoring, as well as taking up volume in the tank. The tank has been sounded at the same location multiple times to determine the level of the solids. The readings have been 12, 25 and 15 inches. The SFT is 8.5 feet high and 12 feet in diameter, therefore the solids account for approximately 10 % of the tank volume. Saltstone Engineering has unsuccessfully attempted to obtain scrape samples of the solids for analysis. As a result, Savannah River National Laboratory (SRNL) was tasked with developing a soft core sampler to obtain a sample of the solids and to analyze the core sample to aid in determining a path forward for removing the solids from the SFT. The source of the material in the SFT is the drain water return system where excess liquid from the Saltstone disposal vaults is pumped back to the SFT for reprocessing. It has been shown that fresh grout from the vault enter the drain water system piping. Once these grout solids return to the SFT, they settle in the tank, set up, and can't be reprocessed, causing buildup in the tank over time. The composition of the material indicates that it is potentially toxic for chromium and mercury and the primary radionuclide is cesium-137. Qualitative measurements show that the material is not cohesive and will break apart with some force

    ANALYTICAL RESULTS OF MOX COLEMANITE CONCRETE SAMPLE POURED MAY 4, 2012

    Get PDF
    The Mixed Oxide Fuel Fabrication Facility (MFFF) will use Colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses. The Savannah River National Laboratory is tasked with measuring the total density, partial hydrogen density, and partial boron density of the colemanite concrete. Sample 04 May 12/Test/S1-1, S1-2, and S1-3 was received on 5/9/2012 and analyzed. The total density measure by the ASTM method C 642 was 2.00 g/cm{sup 3}, within the lower bound of 1.88 g/cm{sup 3}. The partial hydrogen density of 6.35E-02 g/cm{sup 3} as measured using method ASTM E 1311 met the lower bound of 6.04E-02 g/cm{sup 3}. The measured partial boron density of 1.88E-01 g/cm{sup 3} exceeded the lower bound of 1.65E-01 g/cm{sup 3} when the sodium peroxide fusion dissolution method was used in place of the prescribed ASTM C 1301 method
    • …
    corecore