135 research outputs found

    The Kohn mode for trapped Bose gases within the dielectric formalism

    Get PDF
    The presence of undamped harmonic center of mass oscillations of a weakly interacting Bose gas in a harmonic trap is demonstrated within the dielectric formalism for a previously introduced finite temperature approximation including exchange. The consistency of the approximation with the Kohn theorem is thereby demonstrated. The Kohn modes are found explicitly, generalizing an earlier zero-temperature result found in the literature. It is shown how the Kohn mode disappears from the single-particle spectrum, while remaining in the density oscillation spectrum, when the temperature increases from below to above the condensation temperature.Comment: 6 pages revte

    Quasi-equilibria in one-dimensional self-gravitating many body systems

    Full text link
    The microscopic dynamics of one-dimensional self-gravitating many-body systems is studied. We examine two courses of the evolution which has the isothermal and stationary water-bag distribution as initial conditions. We investigate the evolution of the systems toward thermal equilibrium. It is found that when the number of degrees of freedom of the system is increased, the water-bag distribution becomes a quasi-equilibrium, and also the stochasticity of the system reduces. This results suggest that the phase space of the system is effectively not ergodic and the system with large degreees of freedom approaches to the near-integrable one.Comment: 21pages + 7 figures (available upon request), revtex, submitted to Physical Review

    “I kind of had an avatar switch” : the role of the self in engagement with an interactive TV drama

    Get PDF
    This paper reports results from a study which examined viewers’ cognitive and affective responses to an interactive TV drama. Ten participants were videoed interacting with ‘Our World War’ [1], and then interviewed about their experience using the video playback as a retrospective prompt. An interpretative framework was designed to guide analysis by probing themes of narrative engagement identified in previous literature. We report findings relating to five themes of engagement: cognitive, affective, perspective taking, competence and autonomy, and transportation. Our data adds to the existing literature on interactive stories by highlighting the pivotal role of the self in engaging with interactive drama, with self-reflection emerging within each theme. We conclude that two experiential states drive engagement: a transported experience; and one in which self-reflection limits transportation

    Structural Evidence of a Major Conformational Change Triggered by Substrate Binding in DapE Enzymes: Impact on the Catalytic Mechanism

    Get PDF
    The X-ray crystal structure of the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase from Haemophilus influenzae (HiDapE) bound by the products of hydrolysis, succinic acid and l,l-DAP, was determined at 1.95 Å. Surprisingly, the structure bound to the products revealed that HiDapE undergoes a significant conformational change in which the catalytic domain rotates ∌50° and shifts ∌10.1 Å (as measured at the position of the Zn atoms) relative to the dimerization domain. This heretofore unobserved closed conformation revealed significant movements within the catalytic domain compared to that of wild-type HiDapE, which results in effectively closing off access to the dinuclear Zn(II) active site with the succinate carboxylate moiety bridging the dinculear Zn(II) cluster in a ÎŒ-1,3 fashion forming a bis(ÎŒ-carboxylato)dizinc(II) core with a Zn–Zn distance of 3.8 Å. Surprisingly, His194.B, which is located on the dimerization domain of the opposing chain ∌10.1 Å from the dinuclear Zn(II) active site, forms a hydrogen bond (2.9 Å) with the oxygen atom of succinic acid bound to Zn2, forming an oxyanion hole. As the closed structure forms upon substrate binding, the movement of His194.B by more than ∌10 Å is critical, based on site-directed mutagenesis data, for activation of the scissile carbonyl carbon of the substrate for nucleophilic attack by a hydroxide nucleophile. Employing the HiDapE product-bound structure as the starting point, a reverse engineering approach called product-based transition-state modeling provided structural models for each major catalytic step. These data provide insight into the catalytic reaction mechanism and also the future design of new, potent inhibitors of DapE enzymes

    Relaxation processes in one-dimensional self-gravitating many-body systems

    Get PDF
    Though one dimensional self-gravitating NN-body systems have been studied for three decade, the nature of relaxation was still unclear. There were inconsistent results about relaxation time; some initial state relaxed in the time scale T∌N tcT\sim N\,t_c, but another state did not relax even after T∌N2 tcT\sim N^2\,t_c, where tct_c is the crossing time. The water-bag distribution was believed not to relax after T∌N2 tcT\sim N^2\,t_c. In our previous paper, however, we found there are two different relaxation times in the water-bag distribution;in the faster relaxation ( microscopic relaxation ) the equipartition of energy distribution is attains but the macroscopic distribution turns into the isothermal distribution in the later relaxation (macroscopic relaxation). In this paper, we investigated the properties of the two relaxation. We found that the microscopic relaxation time is T∌N tcT\sim N\,t_c, and the macroscopic relaxation time is proportional to N tcN\,t_c, thus the water-bag does relax. We can see the inconsistency about the relaxation times is resolved as that we see the two different aspect of relaxations. Further, the physical mechanisms of the relaxations are presented.Comment: 11 pages, uuencoded, compressed Postscript, no figure, figures available at ftp://ferio.mtk.nao.ac.jp/pub/tsuchiya/Tsuchiya95.tar.g

    Shifts and widths of collective excitations in trapped Bose gases by the dielectric formalism

    Full text link
    We present predictions for the temperature dependent shifts and damping rates. They are obtained by applying the dielectric formalism to a simple model of a trapped Bose gas. Within the framework of the model we use lowest order perturbation theory to determine the first order correction to the results of Hartree-Fock-Bogoliubov-Popov theory for the complex collective excitation frequencies, and present numerical results for the temperature dependence of the damping rates and the frequency shifts. Good agreement with the experimental values measured at JILA are found for the m=2 mode, while we find disagreements in the shifts for m=0. The latter point to the necessity of a non-perturbative treatment for an explanation of the temperature-dependence of the m=0 shifts.Comment: 10 pages revtex, 3 figures in postscrip

    Zig-Zag Numberlink is NP-Complete

    Get PDF
    When can tt terminal pairs in an m×nm \times n grid be connected by tt vertex-disjoint paths that cover all vertices of the grid? We prove that this problem is NP-complete. Our hardness result can be compared to two previous NP-hardness proofs: Lynch's 1975 proof without the ``cover all vertices'' constraint, and Kotsuma and Takenaga's 2010 proof when the paths are restricted to have the fewest possible corners within their homotopy class. The latter restriction is a common form of the famous Nikoli puzzle \emph{Numberlink}; our problem is another common form of Numberlink, sometimes called \emph{Zig-Zag Numberlink} and popularized by the smartphone app \emph{Flow Free}

    Limitations of squeezing due to collisional decoherence in Bose-Einstein condensates

    Get PDF
    We study the limitations for entanglement due to collisional decoherence in a Bose-Einstein condensate. Specifically we consider relative number squeezing between photons and atoms coupled out from a homogeneous condensate. We study the decay of excited quasiparticle modes due to collisions, in condensates of atoms with one or two internal degrees of freedom. The time evolution of these modes is determined in the linear response approximation to the deviation from equilibrium. We use Heisenberg-Langevin equations to derive equations of motion for the densities and higher correlation functions which determine the squeezing. In this way we can show that decoherence due to quasiparticle interactions imposes an important limit on the degree of number squeezing which may be achieved. Our results are also relevant for the determination of decoherence times in other experiments based on entanglement, e.g. the slowing and stopping of light in condensed atomic gases using dark states.Comment: 16 pages RevTeX, 3 figure

    Energies and damping rates of elementary excitations in spin-1 Bose-Einstein condensed gases

    Full text link
    Finite temperature Green's function technique is used to calculate the energies and damping rates of elementary excitations of the homogeneous, dilute, spin-1 Bose gases below the Bose-Einstein condensation temperature both in the density and spin channels. For this purpose the self-consistent dynamical Hartree-Fock model is formulated, which takes into account the direct and exchange processes on equal footing by summing up certain classes of Feynman diagrams. The model is shown to fulfil the Goldstone theorem and to exhibit the hybridization of one-particle and collective excitations correctly. The results are applied to the gases of ^{23}Na and ^{87}Rb atoms.Comment: 26 pages, 21 figures. Added 2 new figures, detailed discussio

    Thermodynamics of a Trapped Bose-Fermi Mixture

    Full text link
    By using the Hartree-Fock-Bogoliubov equations within the Popov approximation, we investigate the thermodynamic properties of a dilute binary Bose-Fermi mixture confined in an isotropic harmonic trap. For mixtures with an attractive Bose-Fermi interaction we find a sizable enhancement of the condensate fraction and of the critical temperature of Bose-Einstein condensation with respect to the predictions for a pure interacting Bose gas. Conversely, the influence of the repulsive Bose-Fermi interaction is less pronounced. The possible relevance of our results in current experiments on trapped 87Rb−40^{87}{\rm Rb}-^{40}{\rm K} mixtures is discussed.Comment: 5 pages + 4 figures; minor changes, final version to appear in Phys. Rev. A; the extension work on the finite-temperature low-lying excitations can be found in cond-mat/030763
    • 

    corecore