18 research outputs found
Investigating Novel Methods of Interaction with Pharmaceutically Relevant Enzymes
Metalloproteins requiring one or more metal ions for normal function make up 30% of all known proteins, and many critical biological pathways contain at least one metallo-enzyme. Di-nuclear metallo-proteins constitute a large class of these proteins yet we currently lack effective methods of inhibiting these enzymes for the development of new medical therapies, particularly for the discovery of new antibiotics. Our work has focused on developing novel functionalities that selectively interact with di-nuclear catalytic centers, and we are targeting three separate di-zinc-metallo-enzymes that are unique to bacteria and play key roles in their growth and development. These enzymes are DapE, AiiA, and NDM-1. DapE is involved in biosynthesis of lysine and meso-diaminopimelic acid, essential precursors in the production of bacterial cell walls. AiiA is a di-Zn-dependent lactonase involved in bacterial cell-cell communication, and NDM-1 is a di-metallo-beta-lactamase capable of deactivating the most commonly administered antibiotics, gaining international attention for this enzyme as a clinically-relevant pharmaceutical target, yet drug development efforts have proven ineffective due to a lack of effective inhibitors.
As part of our ongoing studies to functionally annotate the Gcn5-related N-acetyltransferase (GNAT) PA4794 from Pseudomonas aeruginosa with unknown functions, we have used PA4794 as a model system for exploring efficient formation of bisubstrate complexes to enhance our success rate in obtaining co-crystal structures of GNATs with ligands bound in their acceptor sites. We have synthesized and tested substrate analogs of the previously identified N-phenylacetyl glycine lysine (NPAcGK) enabling two separate three-dimensional structures of PA4794 with NPAcGK analog-derived bisubstrates formed through direct reaction with CoA—the first through direct alkylation with a reactive substrate, and the second through X-ray induced radical-mediated process. We have also performed docking and molecular dynamics simulations of the reverse reaction pathway from the NPAcGK product back to formation of the tetrahedral intermediate/transition state to complement our structural work and to explore the key ligand-protein interactions within the active site of PA4794, guiding mutant synthesis and kinetics to explore the role of key residues in the active site
In Silico Binding of 2-Aminocyclobutanones to SARS-CoV-2 Nsp13 Helicase and Demonstration of Antiviral Activity
The landscape of viral strains and lineages of SARS-CoV-2 keeps changing and is currently dominated by Delta and Omicron variants. Members of the latest Omicron variants, including BA.1, are showing a high level of immune evasion, and Omicron has become a prominent variant circulating globally. In our search for versatile medicinal chemistry scaffolds, we prepared a library of substituted α-aminocyclobutanones from an α-aminocyclobutanone synthon (11). We performed an in silico screen of this actual chemical library as well as other virtual 2-aminocyclobutanone analogs against seven SARS-CoV-2 nonstructural proteins to identify potential drug leads against SARS-CoV-2, and more broadly against coronavirus antiviral targets. Several of these analogs were initially identified as in silico hits against SARS-CoV-2 nonstructural protein 13 (Nsp13) helicase through molecular docking and dynamics simulations. Antiviral activity of the original hits as well as α-aminocyclobutanone analogs that were predicted to bind more tightly to SARS-CoV-2 Nsp13 helicase are reported. We now report cyclobutanone derivatives that exhibit anti-SARS-CoV-2 activity. Furthermore, the Nsp13 helicase enzyme has been the target of relatively few target-based drug discovery efforts, in part due to a very late release of a high-resolution structure accompanied by a limited understanding of its protein biochemistry. In general, antiviral agents initially efficacious against wild-type SARS-CoV-2 strains have lower activities against variants due to heavy viral loads and greater turnover rates, but the inhibitors we are reporting have higher activities against the later variants than the wild-type (10–20X). We speculate this could be due to Nsp13 helicase being a critical bottleneck in faster replication rates of the new variants, so targeting this enzyme affects these variants to an even greater extent. This work calls attention to cyclobutanones as a useful medicinal chemistry scaffold, and the need for additional focus on the discovery of Nsp13 helicase inhibitors to combat the aggressive and immune-evading variants of concern (VOCs)
Mapping Roles of Active Site Residues in the Acceptor Site of the PA3944 Gcn5-Related N-Acetyltransferase Enzyme
An increased understanding of how the acceptor site in Gcn5-related N-acetyltransferase (GNAT) enzymes recognizes various substrates provides important clues for GNAT functional annotation and their use as chemical tools. In this study, we explored how the PA3944 enzyme from Pseudomonas aeruginosa recognizes three different acceptor substrates, including aspartame, NANMO, and polymyxin B, and identified acceptor residues that are critical for substrate specificity. To achieve this, we performed a series of molecular docking simulations and tested methods to identify acceptor substrate binding modes that are catalytically relevant. We found that traditional selection of best docking poses by lowest S scores did not reveal acceptor substrate binding modes that were generally close enough to the donor for productive acetylation. Instead, sorting poses based on distance between the acceptor amine nitrogen atom and donor carbonyl carbon atom placed these acceptor substrates near residues that contribute to substrate specificity and catalysis. To assess whether these residues are indeed contributors to substrate specificity, we mutated seven amino acid residues to alanine and determined their kinetic parameters. We identified several residues that improved the apparent affinity and catalytic efficiency of PA3944, especially for NANMO and/or polymyxin B. Additionally, one mutant (R106A) exhibited substrate inhibition toward NANMO, and we propose scenarios for the cause of this inhibition based on additional substrate docking studies with R106A. Ultimately, we propose that this residue is a key gatekeeper between the acceptor and donor sites by restricting and orienting the acceptor substrate within the acceptor site
Cyclobutanone Inhibitor of Cobalt-Functionalized Metallo-γ-Lactonase AiiA with Cyclobutanone Ring Opening in the Active Site
An α-amido cyclobutanone possessing a C10 hydrocarbon tail was designed as a potential transition-state mimetic for the quorum-quenching metallo-γ-lactonase autoinducer inactivator A (AiiA) with the support of in-house modeling techniques and found to be a competitive inhibitor of dicobalt(II) AiiA with an inhibition constant of Ki = 0.007 ± 0.002 mM. The catalytic mechanism of AiiA was further explored using our product-based transition-state modeling (PBTSM) computational approach, providing substrate-intermediate models arising during enzyme turnover and further insight into substrate–enzyme interactions governing native substrate catalysis. These interactions were targeted in the docking of cyclobutanone hydrates into the active site of AiiA. The X-ray crystal structure of dicobalt(II) AiiA cocrystallized with this cyclobutanone inhibitor unexpectedly revealed an N-(2-oxocyclobutyl)decanamide ring-opened acyclic product bound to the enzyme active site (PDB 7L5F). The C10 alkyl chain and its interaction with the hydrophobic phenylalanine clamp region of AiiA adjacent to the active site enabled atomic placement of the ligand atoms, including the C10 alkyl chain. A mechanistic hypothesis for the ring opening is proposed involving a radical-mediated process
Cyclobutanone Inhibitors of Diaminopimelate Desuccinylase (DapE) as Potential New Antibiotics
Based on our previous success in using cyclobutanone derivatives as enzyme inhibitors, we have designed and prepared a 37-member library of α-aminocyclobutanone amides and sulfonamides, screened for inhibition of the bacterial enzyme diaminopimelate desuccinylase (DapE), which is a promising antibiotic target, and identified several inhibitors with micromolar inhibitory potency. Molecular docking suggests binding of the deprotonated hydrate of the strained cyclobutanone, and thermal shift analysis with the most potent inhibitor (3y, IC50 = 23.1 µM) enabled determination of a Ki value of 10.2 +/− 0.26 µM and observed two separate Tm values for H. influenzae DapE (HiDapE)
Indoline‐6‐Sulfonamide Inhibitors of the Bacterial Enzyme DapE
Inhibitors of the bacterial enzyme dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE; EC 3.5.1.18) hold promise as antibiotics with a new mechanism of action. Herein we describe the discovery of a new series of indoline sulfonamide DapE inhibitors from a high-throughput screen and the synthesis of a series of analogs. Inhibitory potency was measured by a ninhydrin-based DapE assay recently developed by our group. Molecular docking experiments suggest active site binding with the sulfonamide acting as a zinc-binding group (ZBG)
Synthesis of a Protected 2-Aminocyclobutanone as a Modular Transition State Synthon for Medicinal Chemistry
The hydrochloride salt of ɑ-aminocyclobutanone protected as its dimethyl acetal 2,2-dimethoxycyclobutan-1-aminium chloride (3) has been prepared as a modular synthon for convenient access to cyclobutanone-containing lead inhibitors of hydrolase enzymes including serine proteases and metalloproteases. Protected ɑ-aminocyclobutanone 3 was converted to representative amide and sulfonamide-functionalized 2-aminocyclobutanone derivatives. Reaction of the amino acetal 3 with phenyl isothiocyanate afforded the bicyclic urea 1-hydroxyl-2,4-diazabicyclo[3.2.0]heptane-3-thione (9) as confirmed by a single crystal X-ray structure
Recommended from our members
First Contact: 7-Phenyl-2-Aminoquinolines, Potent and Selective Neuronal Nitric Oxide Synthase Inhibitors That Target an Isoform-Specific Aspartate.
Inhibition of neuronal nitric oxide synthase (nNOS), an enzyme implicated in neurodegenerative disorders, is an attractive strategy for treating or preventing these diseases. We previously developed several classes of 2-aminoquinoline-based nNOS inhibitors, but these compounds had drawbacks including off-target promiscuity, low activity against human nNOS, and only modest selectivity for nNOS over related enzymes. In this study, we synthesized new nNOS inhibitors based on 7-phenyl-2-aminoquinoline and assayed them against rat and human nNOS, human eNOS, and murine and (in some cases) human iNOS. Compounds with a meta-relationship between the aminoquinoline and a positively charged tail moiety were potent and had up to nearly 900-fold selectivity for human nNOS over human eNOS. X-ray crystallography indicates that the amino groups of some compounds occupy a water-filled pocket surrounding an nNOS-specific aspartate residue (absent in eNOS). This interaction was confirmed by mutagenesis studies, making 7-phenyl-2-aminoquinolines the first aminoquinolines to interact with this residue
Recommended from our members
Crystallographic and Computational Insights into Isoform-Selective Dynamics in Nitric Oxide Synthase
In our efforts to develop inhibitors selective for neuronal nitric oxide synthase (nNOS) over endothelial nitric oxide synthase (eNOS), we found that nNOS can undergo conformational changes in response to inhibitor binding that does not readily occur in eNOS. One change involves movement of a conserved tyrosine, which hydrogen bonds to one of the heme propionates, but in the presence of an inhibitor, changes conformation, enabling part of the inhibitor to hydrogen bond with the heme propionate. This movement does not occur as readily in eNOS and may account for the reason why these inhibitors bind more tightly to nNOS. A second structural change occurs upon the binding of a second inhibitor molecule to nNOS, displacing the pterin cofactor. Binding of this second site inhibitor requires structural changes at the dimer interface, which also occurs more readily in nNOS than in eNOS. Here, we used a combination of crystallography, mutagenesis, and computational methods to better understand the structural basis for these differences in NOS inhibitor binding. Computational results show that a conserved tyrosine near the primary inhibitor binding site is anchored more tightly in eNOS than in nNOS, allowing for less flexibility of this residue. We also find that the inefficiency of eNOS to bind a second inhibitor molecule is likely due to the tighter dimer interface in eNOS compared with nNOS. This study provides a better understanding of how subtle structural differences in NOS isoforms can result in substantial dynamic differences that can be exploited in the development of isoform-selective inhibitors
Crystallographic and Computational Insights into Isoform-Selective Dynamics in Nitric Oxide Synthase
In our efforts to
develop inhibitors selective for neuronal nitric
oxide synthase (nNOS) over endothelial nitric oxide synthase (eNOS),
we found that nNOS can undergo conformational changes in response
to inhibitor binding that does not readily occur in eNOS. One change
involves movement of a conserved tyrosine, which hydrogen bonds to
one of the heme propionates, but in the presence of an inhibitor,
changes conformation, enabling part of the inhibitor to hydrogen bond
with the heme propionate. This movement does not occur as readily
in eNOS and may account for the reason why these inhibitors bind more
tightly to nNOS. A second structural change occurs upon the binding
of a second inhibitor molecule to nNOS, displacing the pterin cofactor.
Binding of this second site inhibitor requires structural changes
at the dimer interface, which also occurs more readily in nNOS than
in eNOS. Here, we used a combination of crystallography, mutagenesis,
and computational methods to better understand the structural basis
for these differences in NOS inhibitor binding. Computational results
show that a conserved tyrosine near the primary inhibitor binding
site is anchored more tightly in eNOS than in nNOS, allowing for less
flexibility of this residue. We also find that the inefficiency of
eNOS to bind a second inhibitor molecule is likely due to the tighter
dimer interface in eNOS compared with nNOS. This study provides a
better understanding of how subtle structural differences in NOS isoforms
can result in substantial dynamic differences that can be exploited
in the development of isoform-selective inhibitors