5,839 research outputs found

    Estimating sunspot number

    Get PDF
    An empirical method is developed to predict certain parameters of future solar activity cycles. Sunspot cycle statistics are examined, and curve fitting and linear regression analysis techniques are utilized

    Progression of myopathology in Kearns-Sayre syndrome

    Get PDF
    We report on the progression of myopathology by comparing two biopsies from a patient with a Kearns-Sayre-Syndrome. The first biopsy was taken in 1979 and showed 10% ragged-red fibers. Myopathic changes were slight including internal nuclei and fiber splitting in 10% of the fibers. Electron microscopy revealed typical mitochondrial abnormalities with regard to number and shape. In 1989 a second biopsy was performed for an extended analysis of mitochondrial DNA. This time less than 5% of all fibers were ragged-red. Severe myopathic changes could be detected which so far has rarely been reported in mitochondrial cytopathy

    Lyman alpha SMM/UVSP absolute calibration and geocoronal correction

    Get PDF
    Lyman alpha observations from the Ultraviolet Spectrometer Polarimeter (UVSP) instrument of the Solar Maximum Mission (SMM) spacecraft were analyzed and provide instrumental calibration details. Specific values of the instrument quantum efficiency, Lyman alpha absolute intensity, and correction for geocoronal absorption are presented

    Closed Strings in Misner Space: Stringy Fuzziness with a Twist

    Full text link
    Misner space, also known as the Lorentzian orbifold R1,1/boostR^{1,1}/boost, is the simplest tree-level solution of string theory with a cosmological singularity. We compute tree-level scattering amplitudes involving twisted states, using operator and current algebra techniques. We find that, due to zero-point quantum fluctuations of the excited modes, twisted strings with a large winding number ww are fuzzy on a scale logw\sqrt{\log w}, which can be much larger than the string scale. Wave functions are smeared by an operator exp(Δ(ν)+)\exp(\Delta(\nu) \partial_+ \partial_-) reminiscent of the Moyal-product of non-commutative geometry, which, since Δ(ν)\Delta(\nu) is real, modulates the amplitude rather than the phase of the wave function, and is purely gravitational in its origin. We compute the scattering amplitude of two twisted states and one tachyon or graviton, and find a finite result. The scattering amplitude of two twisted and two untwisted states is found to diverge, due to the propagation of intermediate winding strings with vanishing boost momentum. The scattering amplitude of three twisted fields is computed by analytic continuation from three-point amplitudes of states with non-zero p+p^+ in the Nappi-Witten plane wave, and the non-locality of the three-point vertex is found to diverge for certain kinematical configurations. Our results for the three-point amplitudes allow in principle to compute, to leading order, the back-reaction on the metric due to a condensation of coherent winding strings.Comment: 29 pages, Latex2e, uses JHEP3.cls; v3: minor corrections, final version to appear in JCA

    Film calibration for the Skylab/ATM S-056 X-ray telescope

    Get PDF
    The sensitometry and film calibration effort for the Skylab/ATM S-056 X-ray telescope is summarized. The apparatus and procedures used are described together with the two types of flight film used, Kodak SO-212 and SO-242. The sensitometry and processing of the flight film are discussed, and the results are presented in the form of the characteristic curves and related data. The use of copy films is also discussed

    Exploring polymer/nanoparticle hybrid solar cells in tandem architecture

    No full text
    Tandem solar cells offer the possibility to significantly enhance solar cell performance through harvesting a broader part of the solar spectrum by using complementary absorbing materials. We report on tandem solar cells, with at least one polymer/nanoparticle hybrid layer as absorber material, in which the nanoparticles are prepared in situ by thermal decomposition of metal xanthates directly in the polymer matrix. In a first series, we investigated a hybrid-organic tandem solar cell, with a hybrid solar cell consisting of the silafluorene containing low band gap polymer PSiF-DBT and copper indium sulphide (CIS) nanoparticles as the bottom cell, and a low band gap polymer (PTB7)/fullerene derivative (PC61BM) organic solar cell as the top cell in order to study different recombination layers. Tandem devices with open circuit voltages nearly reaching the sum of the individual cells have been realised. The short circuit current is equal to the value of the hybrid single cell and a fill factor above 50% is obtained, leading to power conversion efficiencies of about 4.1%. Furthermore, the first results on hybrid-hybrid tandem solar cells consisting of two PSiF-DBT/CIS solar cells are presented. Although the preparation of these double hybrid devices is challenging because of the necessity of two thermal annealing steps, the resulting multilayer stack reveals smooth and homogeneous layers with sharp interfaces. The first working hybrid-hybrid tandem solar cells still exhibited 81% of the sum of the open circuit voltages of the single junction solar cells. © 2013 The Royal Society of Chemistry

    Proteasome Lid Bridges Mitochondrial Stress with Cdc53/Cullin1 NEDDylation Status

    Get PDF
    Cycles of Cdc53/Cullin1 rubylation (a.k.a NEDDylation) protect ubiquitin-E3 SCF (Skp1-Cullin1-F-box protein) complexes from self-destruction and play an important role in mediating the ubiquitination of key protein substrates involved in cell cycle progression, development, and survival. Cul1 rubylation is balanced by the COP9 signalosome (CSN), a multi-subunit derubylase that shows 1:1 paralogy to the 26 S proteasome lid. The turnover of SCF substrates and their relevance to various diseases is well studied, yet, the extent by which environmental perturbations influence Cul1 rubylation/derubylation cycles per se is still unclear. In this study, we show that the level of cellular oxidation serves as a molecular switch, determining Cullin1 rubylation/derubylation ratio. We describe a mutant of the proteasome lid subunit, Rpn11 that exhibits accumulated levels of Cullin1-Rub1 conjugates, a characteristic phenotype of csn mutants. By dissecting between distinct phenotypes of rpn11 mutants, proteasome and mitochondria dysfunction, we were able to recognize the high reactive oxygen species (ROS) production during the transition of cells into mitochondrial respiration, as a checkpoint of Cullin1 rubylation in a reversible manner. Thus, the study adds the rubylation cascade to the list of cellular pathways regulated by redox homeostasis

    Impact of carbon dioxide versus air pneumoperitoneum on peritoneal cell migration and cell fate

    Get PDF
    Background: Postoperative systemic immune function is suppressed after open abdominal surgery, as compared with that after minimally invasive abdominal surgery. As a first line of defense, peritoneal macrophages (PMo) and polymorphonuclear neutrophil granulocytes (PMNs) are of primary importance in protecting the body from microorganisms. Previous studies have shown changes in these cell populations over time after open versus laparoscopic surgery. This study aimed to investigate the dynamics of cell recruitment and clearance of peritoneal cells. Methods: Female NMRI mice (33 ± 2 g) were randomly assigned to carbon dioxide (CO2) or air insufflation. Intravasal cells with phagocytic capabilities were selectively stained by intravenous injection of the fluorescent dye PKH26 24 h before surgery. Gas was insufflated into the peritoneal cavity through a catheter, and the pneumoperitoneum was maintained for 30 min. Peritoneal lavage was performed 1, 3, 8, or 24 h after surgery. Apoptotic cells were assessed by flow cytometry using a general caspase substrate. Results: The total peritoneal cell count did not differ between groups. The PKH26-positive PMo level was significantly increased after CO2, as compared with air, at 1 h and 24 h. The ratio of apoptotic PMo did not differ between the groups. In the peritoneal lavage, polymorphonuclear leukocytes (PMNs) were tripled in the air group, as compared with the CO2 group, whereas the ratio of apoptotic PMNs was significantly decreased. There was a higher fraction of PKH26-positive PMNs after air exposure, as compared with that after CO2. Conclusions: Air exposure triggered a higher transmigration rate of PMNs from the blood compartment into the peritoneal cavity and decreased PMN apoptosis, as compared with CO2. The lower proportion of PKH26-positive peritoneal macrophages in the air group might have been attributable to a higher inflammatory stimulation than in the CO2 group, leading to increased emigration of PMo to draining lymph nodes. All the findings underscore a complex cell-specific regulation of cell recruitment and clearance in the peritoneal compartmen

    A Fermi Surface Model for Large Supersymmetric AdS_5 Black Holes

    Full text link
    We identify a large family of 1/16 BPS operators in N=4 SYM that qualitatively reproduce the relations between charge, angular momentum and entropy in regular supersymmetric AdS_5 black holes when the main contribution to their masses is given by their angular momentum.Comment: 32 pages, 6 figures, LaTeX uses JHEP3 class; ver 2- added acknowledgment, minor change
    corecore