1,023 research outputs found

    Dynamical Heterogeneity and Nonlinear Susceptibility in Short-Ranged Attractive Supercooled Liquids

    Full text link
    Recent work has demonstrated the strong qualitative differences between the dynamics near a glass transition driven by short-ranged repulsion and one governed by short-ranged attraction. Here, we study in detail the behavior of non-linear, higher-order correlation functions that measure the growth of length scales associated with dynamical heterogeneity in both types of systems. We find that this measure is qualitatively different in the repulsive and attractive cases with regards to the wave vector dependence as well as the time dependence of the standard non-linear four-point dynamical susceptibility. We discuss the implications of these results for the general understanding of dynamical heterogeneity in glass-forming liquids.Comment: 5 pages, 3 figure

    Transport through an Anderson impurity: Current ringing, non-linear magnetization and a direct comparison of continuous-time quantum Monte Carlo and hierarchical quantum master equations

    Full text link
    We give a detailed comparison of the hierarchical quantum master equation (HQME) method to a continuous-time quantum Monte Carlo (CT-QMC) approach, assessing the usability of these numerically exact schemes as impurity solvers in practical nonequilibrium calculations. We review the main characteristics of the methods and discuss the scaling of the associated numerical effort. We substantiate our discussion with explicit numerical results for the nonequilibrium transport properties of a single-site Anderson impurity. The numerical effort of the HQME scheme scales linearly with the simulation time but increases (at worst exponentially) with decreasing temperature. In contrast, CT-QMC is less restricted by temperature at short times, but in general the cost of going to longer times is also exponential. After establishing the numerical exactness of the HQME scheme, we use it to elucidate the influence of different ways to induce transport through the impurity on the initial dynamics, discuss the phenomenon of coherent current oscillations, known as current ringing, and explain the non-monotonic temperature dependence of the steady-state magnetization as a result of competing broadening effects. We also elucidate the pronounced non-linear magnetization dynamics, which appears on intermediate time scales in the presence of an asymmetric coupling to the electrodes.Comment: 32 pages, 10 figures; revised versio

    Decoherence and lead induced inter-dot coupling in nonequilibrium electron transport through interacting quantum dots: A hierarchical quantum master equation approach

    Full text link
    The interplay between interference effects and electron-electron interactions in electron transport through an interacting double quantum dot system is investigated using a hierarchical quantum master equation approach which becomes exact if carried to infinite order and converges well if the temperature is not too low. Decoherence due to electron-electron interactions is found to give rise to pronounced negative differential resistance, enhanced broadening of structures in current-voltage characteristics and an inversion of the electronic population. Dependence on gate voltage is shown to be a useful method of distinguishing decoherence-induced phenomena from effects induced by other mechanisms such as the presence of a blocking state. Comparison of results obtained by the hierarchical quantum master equation approach to those obtained from the Born-Markov approximation to the Nakajima-Zwanzig equation and from the non-crossing approximation to the nonequilibrium Green's function reveals the importance of an inter-dot coupling that originates from the energy dependence of the conduction bands in the leads and the need for a systematic perturbative expansion.Comment: 50 pages, 18 figures, revised versio

    Phase behavior and far-from-equilibrium gelation of charged attractive colloids

    Full text link
    In this Rapid Communication we demonstrate the applicability of an augmented Gibbs ensemble Monte Carlo approach for the phase behavior determination of model colloidal systems with short-ranged depletion attraction and long-ranged repulsion. This technique allows for a quantitative determination of the phase boundaries and ground states in such systems. We demonstrate that gelation may occur in systems of this type as the result of arrested microphase separation, even when the equilibrium state of the system is characterized by compact microphase structures.Comment: 5 pages, 3 figures, final versio

    Comment on "Layering transition in confined molecular thin films: Nucleation and growth"

    Full text link
    When fluid is confined between two molecularly smooth surfaces to a few molecular diameters, it shows a large enhancement of its viscosity. From experiments it seems clear that the fluid is squeezed out layer by layer. A simple solution of the Stokes equation for quasi-two-dimensional confined flow, with the assmption of layer-by-layer flow is found. The results presented here correct those in Phys. Rev. B, 50, 5590 (1994), and show that both the kinematic viscosity of the confined fluid and the coefficient of surface drag can be obtained from the time dependence of the area squeezed out. Fitting our solution to the available experimental data gives the value of viscosity which is ~7 orders of magnitude higher than that in the bulk.Comment: 4 pages, 2 figure

    Theoretical investigation of electron-hole complexes in anisotropic two-dimensional materials

    Full text link
    Trions and biexcitons in anisotropic two-dimensional materials are investigated within an effective mass theory. Explicit results are obtained for phosphorene and arsenene, materials that share features such as a direct quasi-particle gap and anisotropic conduction and valence bands. Trions are predicted to have remarkably high binding energies and an elongated electron-hole structure with a preference for alignment along the armchair direction, where the effective masses are lower. We find that biexciton binding energies are also notably large, especially for monolayer phosphorene, where they are found to be twice as large as those for typical monolayer transition metal dichalcogenides.Comment: 3 figures, 5 pages + Supplementary Material, accepted for publication in Phys. Rev.

    Avalanches and Dynamical Correlations in supercooled liquids

    Full text link
    We identify the pattern of microscopic dynamical relaxation for a two dimensional glass forming liquid. On short timescales, bursts of irreversible particle motion, called cage jumps, aggregate into clusters. On larger time scales, clusters aggregate both spatially and temporally into avalanches. This propagation of mobility, or dynamic facilitation, takes place along the soft regions of the systems, which have been identified by computing isoconfigurational Debye-Waller maps. Our results characterize the way in which dynamical heterogeneity evolves in moderately supercooled liquids and reveal that it is astonishingly similar to the one found for dense glassy granular media.Comment: 4 pages, 3 figure

    A Fully Self-Consistent Treatment of Collective Fluctuations in Quantum Liquids

    Full text link
    The problem of calculating collective density fluctuations in quantum liquids is revisited. A fully quantum mechanical self-consistent treatment based on a quantum mode-coupling theory [E. Rabani and D.R. Reichman, J. Chem. Phys.116, 6271 (2002)] is presented. The theory is compared with the maximum entropy analytic continuation approach and with available experimental results. The quantum mode-coupling theory provides semi-quantitative results for both short and long time dynamics. The proper description of long time phenomena is important in future study of problems related to the physics of glassy quantum systems, and to the study of collective fluctuations in Bose fluids.Comment: 9 pages, 4 figure

    Systematic characterization of thermodynamic and dynamical phase behavior in systems with short-ranged attraction

    Full text link
    In this paper we demonstrate the feasibility and utility of an augmented version of the Gibbs ensemble Monte Carlo method for computing the phase behavior of systems with strong, extremely short-ranged attractions. For generic potential shapes, this approach allows for the investigation of narrower attractive widths than those previously reported. Direct comparison to previous self-consistent Ornstein-Zernike approximation calculations are made. A preliminary investigation of out-of-equilibrium behavior is also performed. Our results suggest that the recent observations of stable cluster phases in systems without long-ranged repulsions are intimately related to gas-crystal and metastable gas-liquid phase separation.Comment: 10 pages, 8 figure
    corecore