1,186 research outputs found

    Beginning augmentative communication systems

    Get PDF
    Journal ArticleTo be unable to produce communicative behavior that can be understood by others represents one of the most frustrating experiences imaginable. Communicating through a communication board or with gestures lessens this frustration but does not eliminate it. Since 1975, remarkable advances have been made in our ability to provide augmentative and alternative communication services to persons for whom speech is not a viable alternative. This chapter highlights that progress and identifies issues that require further empirical scrutiny. Causes and effects in communication and lanugage intervention, Eds. Steven F. Warren and Joe Reichle (c) 1992, Paul H Brooks Publishing Co., Inc. Baltimore, Chapter 6, p. 131-156 by Joe Reichle, Pat Mirenda, Peggy Locke, Laura Piche, & Susan Johnston. Posted by permission

    Coordinating preservice and in-service training of early interventionists to serve preschoolers who engage in challenging behavior

    Get PDF
    Journal ArticleThis chapter focuses on the need to coordinate and improve preservice and in-service training (including technical assistance) for professionals who serve individuals and family members who live or work with young children who engage in challenging behavior. Positive behavioral support: including people with difficult behavior in the community, Eds. Lynn Kern Koegel, Robert L. Koegel, & Glen Dunlap (c) 1996, Paul H Brooks Publishing Co., Inc. Baltimore, Chapter 10, p. 227-264 by Joe Reichle, Mary McEvoy, Carol Davis, Elisabeth Rogers, Kathleen Feeley, Susan Johnston & Kathleen Wolff. Posted by permission

    Developing an initial communicative repertoire: applications and issues for persons with severe disabilities

    Get PDF
    Journal ArticleResearchers and practitioners are increasingly aware of the extent of communicative relationships very early in development. Advances in understanding how communication develops and how it can be taught have made earlier communication intervention a viable undertaking for infants and toddlers who experience developmental disabilities. Advances in our ability to establish functional communication skills in the absence of verbal communicative behavior have created new options for intervention for children who have insufficient structure or function of their speech mechanisms to permit spoken communication. Enhancing children's communication: research foundations for intervention. Eds. Ann P. Kaiser & David B. Gray (c) 1993, Paul H. Brooks Publishing Co., Inc. Baltimore, Chapter 6, p.105-136 by Joe Reichle, James Halle, and Susan Johnston. Posted by permission

    Spring hydrology determines summer net carbon uptake in northern ecosystems

    Get PDF
    Increased photosynthetic activity and enhanced seasonal CO2 exchange of northern ecosystems have been observed from a variety of sources including satellite vegetation indices (such as the normalized difference vegetation index; NDVI) and atmospheric CO2 measurements. Most of these changes have been attributed to strong warming trends in the northern high latitudes (50° N). Here we analyze the interannual variation of summer net carbon uptake derived from atmospheric CO2 measurements and satellite NDVI in relation to surface meteorology from regional observational records. We find that increases in spring precipitation and snow pack promote summer net carbon uptake of northern ecosystems independent of air temperature effects. However, satellite NDVI measurements still show an overall benefit of summer photosynthetic activity from regional warming and limited impact of spring precipitation. This discrepancy is attributed to a similar response of photosynthesis and respiration to warming and thus reduced sensitivity of net ecosystem carbon uptake to temperature. Further analysis of boreal tower eddy covariance CO2 flux measurements indicates that summer net carbon uptake is positively correlated with early growing-season surface soil moisture, which is also strongly affected by spring precipitation and snow pack based on analysis of satellite soil moisture retrievals. This is attributed to strong regulation of spring hydrology on soil respiration in relatively wet boreal and arctic ecosystems. These results document the important role of spring hydrology in determining summer net carbon uptake and contrast with prevailing assumptions of dominant cold temperature limitations to high-latitude ecosystems. Our results indicate potentially stronger coupling of boreal/arctic water and carbon cycles with continued regional warming trends

    Current‐voltage curves of bipolar membranes

    Get PDF
    Bipolar membranes consist of a layered ion‐exchange structure composed of a cation selective membrane joined to an anion selective membrane. They are analogous to semiconductor p‐n devices as both of them present current‐voltage curves exhibiting similar rectification properties. In this article, we present some current‐voltage curves obtained for different bipolar membranes at several temperatures. The results can be interpreted in terms of a simple model for ion transport and field‐enhanced water dissociation previously developed. The mechanism responsible for water splitting is assumed to be a catalytic proton transfer reaction between the charged groups and the water at the membrane interface. The effects of temperature are taken into account by introducing an Arrhenius‐type relationship for the dependence of the forward rate constant of the reaction on temperature. Finally, comparison between theory and experiments provides reasonable values for the parameters introduced in the theoretical model. The analysis aims at developing a better physical understanding of a process in which chemical reactions and transport phenomena are coupled in such a way that the potential technological applications depend strongly on this [email protected]

    Predicting Hydrological Drought: Relative Contributions of Soil Moisture and Snow Information to Seasonal Streamflow Prediction Skill

    Get PDF
    in this study we examine how knowledge of mid-winter snow accumulation and soil moisture conditions contribute to our ability to predict streamflow months in advance. A first "synthetic truth" analysis focuses on a series of numerical experiments with multiple sophisticated land surface models driven with a dataset of observations-based meteorological forcing spanning multiple decades and covering the continental United States. Snowpack information by itself obviously contributes to the skill attained in streamflow prediction, particularly in the mountainous west. The isolated contribution of soil moisture information, however, is found to be large and significant in many areas, particularly in the west but also in region surrounding the Great Lakes. The results are supported by a supplemental, observations-based analysis using (naturalized) March-July streamflow measurements covering much of the western U.S. Additional forecast experiments using start dates that span the year indicate a strong seasonality in the skill contributions; soil moisture information, for example, contributes to kill at much longer leads for forecasts issued in winter than for those issued in summer

    Stokes-Doppler coherence imaging for ITER boundary tomography

    Get PDF
    An optical coherence imaging system is presently being designed for impurity transport studies and other applications on ITER. The wide variation in magnetic field strength and pitch angle (assumed known) across the field of view generates additional Zeeman-polarization-weighting information that can improve the reliability of tomographic reconstructions. Because background reflected light will be somewhat depolarized analysis of only the polarized fraction may be enough to provide a level of background suppression. We present the principles behind these ideas and some simulations that demonstrate how the approach might work on ITER. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization

    Assessment of MERRA-2 Land Surface Energy Flux Estimates

    Get PDF
    In the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) system the land is forced by replacing the model-generated precipitation with observed precipitation before it reaches the surface. This approach is motivated by the expectation that the resultant improvements in soil moisture will lead to improved land surface latent heating (LH). Here we assess aspects of the MERRA-2 land surface energy budget and 2 m air temperatures (T(sup 2m)). For global land annual averages, MERRA-2 appears to overestimate the LH (by 5 W/sq m), the sensible heating (by 6 W/sq m), and the downwelling shortwave radiation (by 14 W/sq m), while underestimating the downwelling and upwelling (absolute) longwave radiation (by 10-15 W/sq m each). These results differ only slightly from those for NASA's previous reanalysis, MERRA. Comparison to various gridded reference data sets over Boreal summer (June-July-August) suggests that MERRA-2 has particularly large positive biases (>20 W/sq m) where LH is energy-limited, and that these biases are associated with evaporative fraction biases rather than radiation biases. For time series of monthly means during Boreal summer, the globally averaged anomaly correlations (R(sub anom)) with reference data were improved from MERRA to MERRA-2, for LH (from 0.39 to 0.48 vs. GLEAM data) and the daily maximum T(sup 2m) (from 0.69 to 0.75 vs. CRU data). In regions where T(sup 2m) is particularly sensitive to the precipitation corrections (including the central US, the Sahel, and parts of south Asia), the changes in the T(sup 2m) R(sub anom) are relatively large, suggesting that the observed precipitation influenced the T(sup 2m) performance

    The Global Observing System in the Assimilation Context

    Get PDF
    Weather and climate analyses and predictions all rely on the global observing system. However, the observing system, whether atmosphere, ocean, or land surface, yields a diverse set of incomplete observations of the different components of Earth s environment. Data assimilation systems are essential to synthesize the wide diversity of in situ and remotely sensed observations into four-dimensional state estimates by combining the various observations with model-based estimates. Assimilation, or associated tools and products, are also useful in providing guidance for the evolution of the observing system of the future. This paper provides a brief overview of the global observing system and information gleaned through assimilation tools, and presents some evaluations of observing system gaps and issues

    Assimilation of Freeze - Thaw Observations into the NASA Catchment Land Surface Model

    Get PDF
    The land surface freeze-thaw (F-T) state plays a key role in the hydrological and carbon cycles and thus affects water and energy exchanges and vegetation productivity at the land surface. In this study, we developed an F-T assimilation algorithm for the NASA Goddard Earth Observing System, version 5 (GEOS-5) modeling and assimilation framework. The algorithm includes a newly developed observation operator that diagnoses the landscape F-T state in the GEOS-5 Catchment land surface model. The F-T analysis is a rule-based approach that adjusts Catchment model state variables in response to binary F-T observations, while also considering forecast and observation errors. A regional observing system simulation experiment was conducted using synthetically generated F-T observations. The assimilation of perfect (error-free) F-T observations reduced the root-mean-square errors (RMSE) of surface temperature and soil temperature by 0.206 C and 0.061 C, respectively, when compared to model estimates (equivalent to a relative RMSE reduction of 6.7 percent and 3.1 percent, respectively). For a maximum classification error (CEmax) of 10 percent in the synthetic F-T observations, the F-T assimilation reduced the RMSE of surface temperature and soil temperature by 0.178 C and 0.036 C, respectively. For CEmax=20 percent, the F-T assimilation still reduces the RMSE of model surface temperature estimates by 0.149 C but yields no improvement over the model soil temperature estimates. The F-T assimilation scheme is being developed to exploit planned operational F-T products from the NASA Soil Moisture Active Passive (SMAP) mission
    corecore