140 research outputs found

    Pathogen identification with laser-induced breakdown spectroscopy: The effect of bacterial and biofluid specimen contamination

    Get PDF
    In this paper, the potential use of laser-induced breakdown spectroscopy (LIBS) for the rapid discrimination and identification of bacterial pathogens in realistic clinical specimens is investigated. Specifically, the common problem of sample contamination was studied by creating mixed samples to investigate the effect that the presence of a second contaminant bacterium in the specimen had on the LIBS-based identification of the primary pathogen. Two closely related bacterial specimens, Escherichia coli strain ATCC 25922 and Enterobacter cloacae strain ATCC 13047, were mixed together in mixing fractions of 10:1, 100:1, and 1000:1. LIBS spectra from the three mixtures were reliably classified as the correct E. coli strain with 98.5% accuracy when all the mixtures were withheld from the training model and classified against spectra from pure specimens. To simulate a rapid test for the presence of urinary tract infection pathogens, LIBS spectra were obtained from specimens of Staphylococcus epidermidis obtained from distilled water and sterile urine. LIBS spectra from the urine-harvested bacteria were classified as S. epidermidis with 100% accuracy when classified using a model containing only spectra from other Staphylococci species and with 88.5% accuracy when a model containing five genera of bacteria was utilized. Bacterial specimens comprising five different genera and 13 classifiable taxonomic groups of species and strains were compiled in a library that was tested using external validation techniques. The importance of utilizing external validation techniques where the library is tested with data withheld from all previous testing and training of the model was revealed by comparing the results against leave-one-out cross-validation results. Last, the effect of using sequential models for the classification of a single unknown spectrum was investigated by comparing the misclassification of two closely related bacteria, E. coli and E. cloacae, when the classification was first performed using the five-genus bacterial library and then with a smaller model consisting only of E. coli and E. cloacae specimens. This result shows the utility of using successively more targeted analyses and models that use preliminary classifications from more general models as input

    The Interface Region Imaging Spectrograph (IRIS)

    Get PDF
    The Interface Region Imaging Spectrograph (IRIS) small explorer spacecraft provides simultaneous spectra and images of the photosphere, chromosphere, transition region, and corona with 0.33-0.4 arcsec spatial resolution, 2 s temporal resolution and 1 km/s velocity resolution over a field-of-view of up to 175 arcsec x 175 arcsec. IRIS was launched into a Sun-synchronous orbit on 27 June 2013 using a Pegasus-XL rocket and consists of a 19-cm UV telescope that feeds a slit-based dual-bandpass imaging spectrograph. IRIS obtains spectra in passbands from 1332-1358, 1389-1407 and 2783-2834 Angstrom including bright spectral lines formed in the chromosphere (Mg II h 2803 Angstrom and Mg II k 2796 Angstrom) and transition region (C II 1334/1335 Angstrom and Si IV 1394/1403 Angstrom). Slit-jaw images in four different passbands (C II 1330, Si IV 1400, Mg II k 2796 and Mg II wing 2830 Angstrom) can be taken simultaneously with spectral rasters that sample regions up to 130 arcsec x 175 arcsec at a variety of spatial samplings (from 0.33 arcsec and up). IRIS is sensitive to emission from plasma at temperatures between 5000 K and 10 MK and will advance our understanding of the flow of mass and energy through an interface region, formed by the chromosphere and transition region, between the photosphere and corona. This highly structured and dynamic region not only acts as the conduit of all mass and energy feeding into the corona and solar wind, it also requires an order of magnitude more energy to heat than the corona and solar wind combined. The IRIS investigation includes a strong numerical modeling component based on advanced radiative-MHD codes to facilitate interpretation of observations of this complex region. Approximately eight Gbytes of data (after compression) are acquired by IRIS each day and made available for unrestricted use within a few days of the observation.Comment: 53 pages, 15 figure

    Beating the blues after Cancer: randomised controlled trial of a tele-based psychological intervention for high distress patients and carers

    Get PDF
    Background: The diagnosis and treatment of cancer is a major life stress such that approximately 35% of patients experience persistent clinically significant distress and carers often experience even higher distress than patients. This paper presents the design of a two arm randomised controlled trial with patients and carers who have elevated psychological distress comparing minimal contact self management vs. an individualised tele-based cognitive behavioural intervention. Methods/design: 140 patients and 140 carers per condition (560 participants in total) will been recruited after being identified as high distress through caller screening at two community-based cancer helplines and randomised to 1) a single 30-minute telephone support and education session with a nurse counsellor with self management materials 2) a tele-based psychologist delivered five session individualised cognitive behavioural intervention. Session components will include stress reduction, problem-solving, cognitive challenging and enhancing relationship support and will be delivered weekly. Participants will be assessed at baseline and 3, 6 and 12 months after recruitment. Outcome measures include: anxiety and depression, cancer specific distress, unmet psychological supportive care needs, positive adjustment, overall Quality of life. Discussion: The study will provide recommendations about the efficacy and potential economic value of minimal contact self management vs. tele-based psychologist delivered cognitive behavioural intervention to facilitate better psychosocial adjustment and mental health for people with cancer and their carers

    Illness cognitions in head and neck squamous cell carcinoma: predicting quality of life outcome

    Get PDF
    Goals of work: This paper presents an observational study of the longitudinal effects of cancer treatment on quality of life (QoL) in patients treated for head and neck squamous cell carcinoma (HNSCC), and evaluated the contribution of patients' baseline illness cognitions to the prediction of QoL 2 years after diagnosis. Patients and methods: One hundred seventy-seven patients eligible for primary treatment for HNSCC completed the Illness Perception Questionnaire-Revised at baseline and the European Organization for Research and Treatment of Cancer Core Quality of Life Questionnaire-30 at baseline, at 1-year and 2-year follow-ups. Main results Compared to baseline, patients reported better emotional functioning at both follow-ups (p<0.001), worse social functioning at 12 months (p<0.05), and better global health

    Selective phosphodiesterase inhibitors: a promising target for cognition enhancement

    Get PDF
    # The Author(s) 2008. This article is published with open access at Springerlink.com Rationale One of the major complaints most people face during aging is an impairment in cognitive functioning. This has a negative impact on the quality of daily life and is even more prominent in patients suffering from neurodegenerative and psychiatric disorders including Alzheimer’s disease, schizophrenia, and depression. So far, the majority of cognition enhancers are generally targeting one particular neurotransmitter system. However, recently phosphodiesterases (PDEs) have gained increased attention as a potential new target for cognition enhancement. Inhibition of PDEs increases the intracellular availability of the second messengers cGMP and/or cAMP. Objective The aim of this review was to provide an overvie
    • …
    corecore