415 research outputs found

    'Word from the street' : when non-electoral representative claims meet electoral representation in the United Kingdom

    Get PDF
    Taking the specific case of street protests in the UK – the ‘word from the street’– this article examines recent (re)conceptualizations of political representation, most particularly Saward’s notion of ‘representative claim’. The specific example of nonelectoral claims articulated by protestors and demonstrators in the UK is used to illustrate: the processes of making, constituting, evaluating and accepting claims for and by constituencies and audiences; and the continuing distinctiveness of claims based upon electoral representation. Two basic questions structure the analysis: first, why would the political representative claims of elected representatives trump the nonelectoral claims of mass demonstrators and, second, in what ways does the ‘perceived legitimacy’ of the former differ from the latter

    First Experimental Evidence for Chaos-Assisted Tunneling in a Microwave Annular Billiard

    Full text link
    We report on first experimental signatures for chaos-assisted tunneling in a two-dimensional annular billiard. Measurements of microwave spectra from a superconducting cavity with high frequency resolution are combined with electromagnetic field distributions experimentally determined from a normal conducting twin cavity with high spatial resolution to resolve eigenmodes with properly identified quantum numbers. Distributions of so-called quasi-doublet splittings serve as basic observables for the tunneling between whispering gallery type modes localized to congruent, but distinct tori which are coupled weakly to irregular eigenstates associated with the chaotic region in phase space.Comment: 5 pages RevTex, 5 low-resolution figures (high-resolution figures: http://linac.ikp.physik.tu-darmstadt.de/heiko/chaospub.html, to be published in Phys. Rev. Let

    Level statistics for nearly integrable systems

    Full text link
    We assume that the level spectra of quantum systems in the initial phase of transition from integrability to chaos are approximated by superpositions of independent sequences. Each individual sequence is modeled by a random matrix ensemble. We obtain analytical expressions for the level spacing distribution and level number variance for such a system. These expressions are successfully applied to the analysis of the resonance spectrum in a nearly integrable microwave billiard.Comment: 10 pages, 4 figure

    Decay of Classical Chaotic Systems - the Case of the Bunimovich Stadium

    Full text link
    The escape of an ensemble of particles from the Bunimovich stadium via a small hole has been studied numerically. The decay probability starts out exponentially but has an algebraic tail. The weight of the algebraic decay tends to zero for vanishing hole size. This behaviour is explained by the slow transport of the particles close to the marginally stable bouncing ball orbits. It is contrasted with the decay function of the corresponding quantum system.Comment: 16 pages, RevTex, 3 figures are available upon request from [email protected], to be published in Phys.Rev.

    Past abrupt changes, tipping points and cascading impacts in the Earth system

    Get PDF
    The geological record shows that abrupt changes in the Earth system can occur on timescales short enough to challenge the capacity of human societies to adapt to environmental pressures. In many cases, abrupt changes arise from slow changes in one component of the Earth system that eventually pass a critical threshold, or tipping point, after which impacts cascade through coupled climate–ecological–social systems. The chance of detecting abrupt changes and tipping points increases with the length of observations. The geological record provides the only long-term information we have on the conditions and processes that can drive physical, ecological and social systems into new states or organizational structures that may be irreversible within human time frames. Here, we use well-documented abrupt changes of the past 30 kyr to illustrate how their impacts cascade through the Earth system. We review useful indicators of upcoming abrupt changes, or early warning signals, and provide a perspective on the contributions of palaeoclimate science to the understanding of abrupt changes in the Earth system

    Can burglary prevention be low-carbon and effective? Investigating the environmental performance of burglary prevention measures

    Get PDF
    There has been limited study to date on the environmental impacts of crime prevention measures. We address this shortfall by estimating the carbon footprint associated with the most widely used burglary prevention measures: door locks, window locks, burglar alarms, lighting and CCTV cameras. We compare these footprints with a measure of their effectiveness, the security protection factor, allowing us to identify those measures that are both low-carbon and effective in preventing burglary. Window locks are found to be the most effective and low-carbon measure available individually. Combinations of window locks, door locks, external and indoor lightings are also shown to be effective and low-carbon. Burglar alarms and CCTV do not perform as strongly, with low security against burglary and higher carbon footprints. This information can be used to help inform more sustainable choices of burglary prevention within households as well as for crime prevention product design

    Evaluating model outputs using integrated global speleothem records of climate change since the last glacial

    Get PDF
    Although quantitative isotope data from speleothems has been used to evaluate isotope-enabled model simulations, currently no consensus exists regarding the most appropriate methodology through which to achieve this. A number of modelling groups will be running isotope-enabled palaeoclimate simulations in the framework of the Coupled Model Intercomparison Project Phase 6, so it is timely to evaluate different approaches to using the speleothem data for data–model comparisons. Here, we illustrate this using 456 globally distributed speleothem δ18O records from an updated version of the Speleothem Isotopes Synthesis and Analysis (SISAL) database and palaeoclimate simulations generated using the ECHAM5-wiso isotope-enabled atmospheric circulation model. We show that the SISAL records reproduce the first-order spatial patterns of isotopic variability in the modern day, strongly supporting the application of this dataset for evaluating model-derived isotope variability into the past. However, the discontinuous nature of many speleothem records complicates the process of procuring large numbers of records if data–model comparisons are made using the traditional approach of comparing anomalies between a control period and a given palaeoclimate experiment. To circumvent this issue, we illustrate techniques through which the absolute isotope values during any time period could be used for model evaluation. Specifically, we show that speleothem isotope records allow an assessment of a model's ability to simulate spatial isotopic trends. Our analyses provide a protocol for using speleothem isotope data for model evaluation, including screening the observations to take into account the impact of speleothem mineralogy on δ18O values, the optimum period for the modern observational baseline and the selection of an appropriate time window for creating means of the isotope data for palaeo-time-slices
    • …
    corecore