218 research outputs found
Investigation of the long-term sustainability of changes in appetite after weight loss
Background/Objective Diet-induced weight loss (WL) leads to a compensatory increase in appetite and changes in the plasma concentration of appetite-regulating hormones are likely to play a role. Whether these changes are transient or sustained remains unclear. This study aimed to assess if changes in subjective and objective appetite markers observed with WL are sustained after 1 year (1Y).Subjects/Methods In total 100 (45 males) individuals with obesity (BMI: 37 +/- 4 kg/m(2), age: 43 +/- 10 years) underwent 8 weeks (wks) of a very-low energy diet (VLED), followed by 4 wks refeeding, and a 1Y maintenance program. Fasting/postprandial subjective ratings of hunger, fullness, desire to eat, and prospective food consumption (PFC) were assessed, and plasma concentration of active ghrelin (AG), total peptide YY (PYY), active glucagon-like peptide 1, cholecystokinin (CCK), and insulin measured, at baseline, week 13 (Wk13) and 1Y.Results At Wk13, 16% WL (-18 +/- 1 kg, P < 0.001) was associated with a significant increase in fasting and postprandial hunger ratings (P < 0.01 and P < 0.05, respectively), and postprandial fullness (P < 0.01) combined with a reduction in PFC (P < 0.001). These were accompanied by a significant rise in basal and postprandial AG concentrations (P < 0.001, for both), a reduction in postprandial CCK (P < 0.01) and in basal and postprandial insulin (P < 0.001). At 1Y follow-up, with sustained WL (15%; -16 +/- 1 kg, P < 0.001), fasting hunger and postprandial fullness ratings remained increased (P < 0.05 for both), and postprandial PFC reduced (P < 0.001). Basal and postprandial AG remained elevated and insulin reduced (P < 0.001, for all), while postprandial CCK was increased (P < 0.01) and PYY decreased (P < 0.001).Conclusion With a 15% sustained WL at 1Y, the drive to eat in the fasting state is increased, but this may be balanced out by raised postprandial feelings of fullness. To assist with WL maintenance, new strategies are required to manage increased hunger and drive to eat
Oxytocin and cholecystokinin secretion in women with colectomy
BACKGROUND: Cholecystokinin (CCK) concentrations in plasma have been shown to be significantly higher in colectomised subjects compared to healthy controls. This has been ascribed to reduced inhibition of CCK release from colon. In an earlier study CCK in all but one woman who was colectomised, induced release of oxytocin, a peptide present throughout the gastrointestinal (GI) tract. The aim of this study was thus to examine if colectomised women had a different oxytocin response to CCK compared to healthy controls. METHODS: Eleven women, mean age 34.4 ± 2.3 years, who had undergone colectomy because of ulcerative colitis or constipation were studied. Eleven age-matched healthy women served as controls. All subjects were fasted overnight and given 0.2 μg/kg body weight of CCK-8 i.v. in the morning. Samples were taken ten minutes and immediately before the injection, and 10, 20, 30, 45, 60, 90 and 120 min afterwards. Plasma was collected for measurement of CCK and oxytocin concentrations. RESULTS: The basal oxytocin and CCK concentrations in plasma were similar in the two groups. Intravenous injection of CCK increased the release of oxytocin from 1.31 ± 0.12 and 1.64 ± 0.19 pmol/l to 2.82 ± 0.35 and 3.26 ± 0.50 pmol/l in controls and colectomised women, respectively (p < 0.001). Given the short half-life of CCK-8 in plasma, the increased concentration following injection could not be demonstrated in the controls. On the other hand, in colectomised women, an increase of CCK in plasma was observed for up to 20 minutes after the injection, concentrations increasing from 1.00 ± 0.21 to a maximum of 1.81 ± 0.26 pmol/l (p < 0.002). CONCLUSION: CCK stimulates the release of oxytocin in women. There is no difference in plasma concentrations between colectomised and controls. However, colectomy seems to reduce the metabolic clearance of CCK. The hyperCCKemia in patients who had undergone colectomy is consequently not only dependent on CCK release, but may also depend on reduced clearance
Secretory granule neuroendocrine protein 1 (SGNE1) genetic variation and glucose intolerance in severe childhood and adult obesity
<p>Abstract</p> <p>Background</p> <p>7B2 is a regulator/activator of the prohormone convertase 2 which is involved in the processing of numerous neuropeptides, including insulin, glucagon and pro-opiomelanocortin. We have previously described a suggestive genetic linkage peak with childhood obesity on chr15q12-q14, where the 7B2 encoding gene, <it>SGNE1 </it>is located. The aim of this study is to analyze associations of <it>SGNE1 </it>genetic variation with obesity and metabolism related quantitative traits.</p> <p>Methods</p> <p>We screened <it>SGNE1 </it>for genetic variants in obese children and genotyped 12 frequent single nucleotide polymorphisms (SNPs). Case control analyses were performed in 1,229 obese (534 children and 695 adults), 1,535 individuals with type 2 diabetes and 1,363 controls, all French Caucasians. We also studied 4,922 participants from the D.E.S.I.R prospective population-based cohort.</p> <p>Results</p> <p>We did not find any association between <it>SGNE1 </it>SNPs and childhood or adult obesity. However, the 5' region SNP -1,701A>G associated with higher area under glucose curve after oral glucose tolerance test (p = 0.0005), higher HOMA-IR (p = 0.005) and lower insulinogenic index (p = 0.0003) in obese children. Similar trends were found in obese adults. SNP -1,701A>G did not associate with risk of T2D but tends to associate with incidence of type 2 diabetes (HR = 0.75 95%CI [0.55–1.01]; p = 0.06) in the prospective cohort.</p> <p>Conclusion</p> <p><it>SGNE1 </it>genetic variation does not contribute to obesity and common forms of T2D but may worsen glucose intolerance and insulin resistance, especially in the background of severe and early onset obesity. Further molecular studies are required to understand the molecular bases involved in this process.</p
The loss of P2X7 receptor expression leads to increase intestinal glucose transit and hepatic steatosis
In intestinal epithelial cells (IEC), it was reported that the activation of the P2X7 receptor leads to the internalization of the glucose transporter GLUT2, which is accompanied by a reduction of IEC capacity to transport glucose. In this study, we used P2rx7−/− mice to decipher P2X7 functions in intestinal glucose transport and to evaluate the impacts on metabolism. Immunohistochemistry analyses
revealed the presence of GLUT2 at the apical domain of P2rx7−/− jejunum enterocytes. Positron emission tomography and biodistribution studies demonstrated that glucose was more efciently delivered to the circulation of knockout animals. These fndings correlated with increase blood glucose,
insulin, triglycerides and cholesterol levels. In fact, P2rx7−/− mice had increased serum triglyceride and cholesterol levels and displayed glucose intolerance and resistance to insulin. Finally, P2rx7−/− mice developed a hepatic steatosis characterized by a reduction of Acaca, Acacb, Fasn and Acox1 mRNA
expression, as well as for ACC and FAS protein expression. Our study suggests that P2X7 could play a central role in metabolic diseases
- …