51 research outputs found

    Infant tidal flow–volume parameters and arousal state

    Get PDF
    This version is distributed under the terms of the Creative Commons Attribution NonCommercial Licence 4.0. For commercial reproduction rights and permissions contact: [email protected]: Infant lung function can be assessed with tidal flow–volume (TFV) loops. While TFV loops can be measured in both awake and sleeping infants, the influence of arousal state in early infancy is not established. The aim of the present study was to determine whether TFV loop parameters in healthy infants differed while awake compared to the sleeping state at 3 months of age. Methods: From the population-based Scandinavian Preventing Atopic Dermatitis and ALLergies in children (PreventADALL) birth cohort, 91 infants had reproducible TFV loops measured with Exhalyzer® D in both the awake and sleeping state at 3 months of age. The TFV loops were manually selected according to a standardised procedure. The ratio of time to peak tidal expiratory flow (tPTEF) to expiratory time (tE) and the corresponding volume ratio (VPTEF/VE), as well as tidal volume (VT) and respiratory rate were compared using nonparametric tests. Results: The mean (95% CI) tPTEF/tE was significantly higher while awake compared to the sleeping state: 0.39 (0.37–0.41) versus 0.28 (0.27–0.29); with the corresponding VPTEF/VE of 0.38 (0.36–0.40) versus 0.29 (0.28–0.30). The VT was similar, while the respiratory rate was higher while awake compared to the sleeping state: 53 (51–56) breaths·min−1 versus 38 (36–40) breaths·min−1 . Conclusion: Higher tPTEF/tE, VPTEF/VE and respiratory rate, but similar VT while awake compared to the sleeping state suggests that separate normative TFV loop values according to arousal state may be required in early infancy.publishedVersio

    Maternal human papillomavirus infection during pregnancy and preterm delivery, a mother–child cohort study in Norway and Sweden

    Get PDF
    Introduction: Human papillomavirus (HPV) infection is common in women of reproductive age. Infection and inflammation are leading causes for preterm delivery (PTD), but the role of HPV infection in PTD and prelabor rupture of membranes (PROM) is unclear. We aimed to explore whether HPV infection during pregnancy in general, and high-risk-HPV (HR-HPV) infection specifically, increased the risk of PTD, preterm prelabor rupture of membranes (PPROM), PROM at term, and/or chorioamnionitis. Material and Methods: In pregnant women, who were participating in a prospective multicenter cohort study from a general population in Norway and Sweden (PreventADALL, ClinicalTrials.gov NCT02449850), HPV DNA was analyzed in available urine samples at mid-gestation (16–22 weeks) and at delivery, and in the placenta after delivery with Seegene Anyplex II HPV28 PCR assay. The risk of PTD, PPROM, PROM, and chorioamnionitis was analyzed using unadjusted and adjusted logistic regression analyses for any 28 HPV genotypes, including 12 HR-HPV genotypes, compared with HPV-negative women. Further, subgroups of HPV (low-risk/possibly HR-HPV, HR-HPV-non-16 and HR-HPV-16), persistence of HR-HPV from mid-gestation to delivery, HR-HPV-viral load, and presence of multiple HPV infections were analyzed for the obstetric outcomes. Samples for HPV analyses were available from 950 women with singleton pregnancies (mean age 32 years) at mid-gestation and in 753 also at delivery. Results: At mid-gestation, 40% of women were positive for any HPV and 24% for HR-HPV. Of the 950 included women, 23 had PTD (2.4%), nine had PPROM (0.9%), and six had chorioamnionitis (0.6%). Of the term pregnancies, 25% involved PROM. The frequency of PTD was higher in HR-HPV-positive women (8/231, 3.5%) than in HPV-negative women (13/573, 2.3%) at mid-gestation, but the association was not statistically significant (odds ratio 1.55; 95% confidence interval 0.63–3.78). Neither any HPV nor subgroups of HPV at mid-gestation or delivery, nor persistence of HR-HPV was significantly associated with increased risk for PTD, PPROM, PROM, or chorioamnionitis. No HPV DNA was detected in placentas of women with PTD, PPROM or chorioamnionitis. Conclusions: HPV infection during pregnancy was not significantly associated with increased risk for PTD, PPROM, PROM, or chorioamnionitis among women from a general population with a low incidence of adverse obstetric outcomes

    Skin care interventions in infants for preventing eczema and food allergy

    Get PDF
    BackgroundEczema and food allergy are common health conditions that usually begin in early childhood and often occur together in the same people. They can be associated with an impaired skin barrier in early infancy. It is unclear whether trying to prevent or reverse an impaired skin barrier soon after birth is effective in preventing eczema or food allergy.ObjectivesPrimary objectiveTo assess effects of skin care interventions, such as emollients, for primary prevention of eczema and food allergy in infantsSecondary objectiveTo identify features of study populations such as age, hereditary risk, and adherence to interventions that are associated withthe greatest treatment benefit or harm for both eczema and food allergy.Search methodsWe searched the following databases up to July 2020: Cochrane Skin Specialised Register, CENTRAL, MEDLINE, and Embase. We searched two trials registers and checked reference lists of included studies and relevant systematic reviews for further references to relevant randomised controlled trials (RCTs). We contacted field experts to identify planned trials and to seek information about unpublished or incomplete trials.Selection criteriaRCTs of skin care interventions that could potentially enhance skin barrier function, reduce dryness, or reduce subclinical inflammation in healthy term (> 37 weeks) infants (0 to 12 months) without pre‐existing diagnosis of eczema, food allergy, or other skin condition were included. Comparison was standard care in the locality or no treatment. Types of skin care interventions included moisturisers/emollients; bathing products; advice regarding reducing soap exposure and bathing frequency; and use of water softeners. No minimum follow‐up was required.Data collection and analysisThis is a prospective individual participant data (IPD) meta‐analysis. We used standard Cochrane methodological procedures, and primary analyses used the IPD dataset. Primary outcomes were cumulative incidence of eczema and cumulative incidence of immunoglobulin (Ig)E‐mediated food allergy by one to three years, both measured by the closest available time point to two years. Secondary outcomes included adverse events during the intervention period; eczema severity (clinician‐assessed); parent report of eczema severity; time to onset of eczema; parent report of immediate food allergy; and allergic sensitisation to food or inhalant allergen.Main resultsThis review identified 33 RCTs, comprising 25,827 participants. A total of 17 studies, randomising 5823 participants, reported information on one or more outcomes specified in this review. Eleven studies randomising 5217 participants, with 10 of these studies providing IPD, were included in one or more meta‐analysis (range 2 to 9 studies per individual meta‐analysis).Most studies were conducted at children's hospitals. All interventions were compared against no skin care intervention or local standard care. Of the 17 studies that reported our outcomes, 13 assessed emollients. Twenty‐five studies, including all those contributing data to meta‐analyses, randomised newborns up to age three weeks to receive a skin care intervention or standard infant skin care. Eight of the 11 studies contributing to meta‐analyses recruited infants at high risk of developing eczema or food allergy, although definition of high risk varied between studies. Durations of intervention and follow‐up ranged from 24 hours to two years.We assessed most of this review's evidence as low certainty or had some concerns of risk of bias. A rating of some concerns was most often due to lack of blinding of outcome assessors or significant missing data, which could have impacted outcome measurement but was judged unlikely to have done so. Evidence for the primary food allergy outcome was rated as high risk of bias due to inclusion of only one trial where findings varied when different assumptions were made about missing data.Skin care interventions during infancy probably do not change risk of eczema by one to two years of age (risk ratio (RR) 1.03, 95% confidence interval (CI) 0.81 to 1.31; moderate‐certainty evidence; 3075 participants, 7 trials) nor time to onset of eczema (hazard ratio 0.86, 95% CI 0.65 to 1.14; moderate‐certainty evidence; 3349 participants, 9 trials). It is unclear whether skin care interventions during infancy change risk of IgE‐mediated food allergy by one to two years of age (RR 2.53, 95% CI 0.99 to 6.47; 996 participants, 1 trial) or allergic sensitisation to a food allergen at age one to two years (RR 0.86, 95% CI 0.28 to 2.69; 1055 participants, 2 trials) due to very low‐certainty evidence for these outcomes. Skin care interventions during infancy may slightly increase risk of parent report of immediate reaction to a common food allergen at two years (RR 1.27, 95% CI 1.00 to 1.61; low‐certainty evidence; 1171 participants, 1 trial). However, this was only seen for cow’s milk, and may be unreliable due to significant over‐reporting of cow’s milk allergy in infants. Skin care interventions during infancy probably increase risk of skin infection over the intervention period (RR 1.34, 95% CI 1.02 to 1.77; moderate‐certainty evidence; 2728 participants, 6 trials) and may increase risk of infant slippage over the intervention period (RR 1.42, 95% CI 0.67 to 2.99; low‐certainty evidence; 2538 participants, 4 trials) or stinging/allergic reactions to moisturisers (RR 2.24, 95% 0.67 to 7.43; low‐certainty evidence; 343 participants, 4 trials), although confidence intervals for slippages and stinging/allergic reactions are wide and include the possibility of no effect or reduced risk.Preplanned subgroup analyses show that effects of interventions were not influenced by age, duration of intervention, hereditary risk, FLG mutation, or classification of intervention type for risk of developing eczema. We could not evaluate these effects on risk of food allergy. Evidence was insufficient to show whether adherence to interventions influenced the relationship between skin care interventions and risk of developing eczema or food allergy.Authors' conclusionsSkin care interventions such as emollients during the first year of life in healthy infants are probably not effective for preventing eczema, and probably increase risk of skin infection. Effects of skin care interventions on risk of food allergy are uncertain.Further work is needed to understand whether different approaches to infant skin care might promote or prevent eczema and to evaluate effects on food allergy based on robust outcome assessments
    corecore