371 research outputs found

    Cell–cell signaling drives the evolution of complex traits: introduction—lung evo-devo

    Get PDF
    Physiology integrates biology with the environment through cell–cell interactions at multiple levels. The evolution of the respiratory system has been “deconvoluted” (Torday and Rehan in Am J Respir Cell Mol Biol 31:8–12, 2004) through Gene Regulatory Networks (GRNs) applied to cell–cell communication for all aspects of lung biology development, homeostasis, regeneration, and aging. Using this approach, we have predicted the phenotypic consequences of failed signaling for lung development, homeostasis, and regeneration based on evolutionary principles. This cell–cell communication model predicts other aspects of vertebrate physiology as adaptational responses. For example, the oxygen-induced differentiation of alveolar myocytes into alveolar adipocytes was critical for the evolution of the lung in land dwelling animals adapting to fluctuating Phanarezoic oxygen levels over the past 500 million years. Adipocytes prevent lung injury due to oxygen radicals and facilitate the rise of endothermy. In addition, they produce the class I cytokine leptin, which augments pulmonary surfactant activity and alveolar surface area, increasing selection pressure for both respiratory oxygenation and metabolic demand initially constrained by high-systemic vascular pressure, but subsequently compensated by the evolution of the adrenomedullary beta-adrenergic receptor mechanism. Conserted positive selection for the lung and adrenals created further selection pressure for the heart, which becomes progressively more complex phylogenetically in tandem with the lung. Developmentally, increasing heart complexity and size impinges precociously on the gut mesoderm to induce the liver. That evolutionary-developmental interaction is significant because the liver provides regulated sources of glucose and glycogen to the evolving physiologic system, which is necessary for the evolution of the neocortex. Evolution of neocortical control furthers integration of physiologic systems. Such an evolutionary vertical integration of cell-to-tissue-to-organ-to-physiology of intrinsic cell–cell signaling and extrinsic factors is the reverse of the “top-down” conventional way in which physiologic systems are usually regarded. This novel mechanistic approach, incorporating a “middle-out” cell–cell signaling component, will lead to a readily available algorithm for integrating genes and phenotypes. This symposium surveyed the phylogenetic origins of such vertically integrated mechanisms for the evolution of cell–cell communication as the basis for complex physiologic traits, from sponges to man

    Experimental verification of a Jarzynski-related information-theoretic equality using a single trapped ion

    Full text link
    Most non-equilibrium processes in thermodynamics are quantified only by inequalities, however the Jarzynski relation presents a remarkably simple and general equality relating non-equilibrium quantities with the equilibrium free energy, and this equality holds in both classical and quantum regimes. We report a single-spin test and confirmation of the Jarzynski relation in quantum regime using a single ultracold 40Ca+^{40}Ca^{+} ion trapped in a harmonic potential, based on a general information-theoretic equality for a temporal evolution of the system sandwiched between two projective measurements. By considering both initially pure and mixed states, respectively, we verify, in an exact and fundamental fashion, the non-equilibrium quantum thermodynamics relevant to the mutual information and Jarzynski equality.Comment: 2 figure

    Reciprocal regulation of nuclear factor kappa B and its inhibitor ZAS3 after peripheral nerve injury

    Get PDF
    BACKGROUND: NF-κB binds to the κB motif to regulate transcription of genes involved in growth, immunity and inflammation, and plays a pivotal role in the production of pro-inflammatory cytokines after nerve injuries. The zinc finger protein ZAS3 also binds to the κB or similar motif. In addition to competition for common DNA sites, in vitro experiments have shown that ZAS3 can inhibit NF-κB via the association with TRAF2 to inhibit the nuclear translocation of NF-κB. However, the physiological significance of the ZAS3-mediated inhibition of NF-κB has not been demonstrated. The purpose of this study is to characterize ZAS3 proteins in nervous tissues and to use spinal nerve ligation, a neuropathic pain model, to demonstrate a functional relationship between ZAS3 and NF-κB. RESULTS: Immunohistochemical experiments show that ZAS3 is expressed in specific regions of the central and peripheral nervous system. Abundant ZAS3 expression is found in the trigeminal ganglion, hippocampal formation, dorsal root ganglia, and motoneurons. Low levels of ZAS3 expressions are also found in the cerebral cortex and in the grey matter of the spinal cord. In those nervous tissues, ZAS3 is expressed mainly in the cell bodies of neurons and astrocytes. Together with results of Western blot analyses, the data suggest that ZAS3 protein isoforms with differential cellular distribution are produced in a cell-specific manner. Further, neuropathic pain confirmed by persistent mechanical allodynia was manifested in rats seven days after L5 and L6 lumbar spinal nerve ligation. Changes in gene expression, including a decrease in ZAS3 and an increase in the p65 subunit of NF-κB were observed in dorsal root ganglion ipsilateral to the ligation when compared to the contralateral side. CONCLUSION: ZAS3 is expressed in nervous tissues involved in cognitive function and pain modulation. The down-regulation of ZAS3 after peripheral nerve injury may lead to activation of NF-κB, allowing Wallerian regeneration and induction of NF-κB-dependent gene expression, including pro-inflammatory cytokines. We propose that reciprocal changes in the expression of ZAS3 and NF-κB might generate neuropathic pain after peripheral nerve injury

    Current status and future prospects in prosthetic voice rehabilitation following laryngectomy

    Get PDF
    Total laryngectomy or laryngopharyngectomy remains the procedure of choice for advanced-stage (UICC T3 and T4) laryngeal carcinoma around the world despite advances in conservative laryngeal surgery and radiotherapy. However, it has profound effects on respiration and deglutition, in addition to the most disabling effect-the loss of verbal communication. Successful voice restoration can be attained with any of three speech options, namely esophageal speech, electrolarynx, and tracheoesophageal (TO) speech using an artificial valve. Although, no single method is considered the best for every patient, the tracheoesophageal puncture has become the preferred method in the past decade. Several types of voice prostheses have been produced since the first prosthesis was introduced in 1980 by Blom and Singer. However, eventually all prostheses are confronted by the same problem, i.e., the development of a biofilm, leading to deterioration and ultimately to dysfunction of the prostheses, necessitating replacement. This article attempts to sum up the historical background as well as the current state of surgical voice rehabilitation following laryngectomy; we review the recent major advances as well as the future prospects. Data was collected by conducting a computer-aided search of the MEDLINE and PubMed databases, supplemented by hand searches of key journals. Over 50 articles published in the last three decades on the topic have been reviewed, out of which about 20 were found to be of relevance for this article

    A rare myoepithelioma of the sinonasal cavity: case report

    Get PDF
    Myoepithelioma is a rare benign neoplasm. Pure accounting for less than 1% of all salivary gland tumors. Only three cases of sinonasal myoepithelioma have been reported in the literature. Diagnosis of myoepithelioma through light microscopy is possible and immunohistochemistry is done to facilitate the diagnosis. The lesion is so rare that there are no specific indications/guidelines for its treatment. We report to you a rare case of sinonasal myoepithelioma in a 57 year old Asian female
    corecore