25 research outputs found

    Time varying Na I D absorption in ILRTs as a probe of circumstellar material

    Full text link
    Intermediate-Luminosity Red Transients (ILRTs) are a class of observed transient posited to arise from the production of an electron-capture supernova from a super-asymptotic giant branch star within a dusty cocoon. In this paper, we present a systematic analysis of narrow Na I D absorption as a means of probing the circumstellar environment of these events. We find a wide diversity of evolution in ILRTs in terms of line strength, time-scale, and shape. We present a simple toy model designed to predict this evolution as arising from ejecta from a central supernova passing through a circumstellar environment wherein Na II is recombining to Na I over time. We find that while our toy model can qualitatively explain the evolution of a number of ILRTs, the majority of our sample undergoes evolution more complex than predicted. The success of using the Na I D doublet as a diagnostic tool for studying circumstellar material will rely on the availability of regular high-resolution spectral observations of multiple ILRTs, and more detailed spectral modelling will be required to produce models capable of explaining the diverse range of behaviours exhibited by ILRTs. In addition, the strength of the Na I D absorption feature has been used as a means of estimating the extinction of sources, and we suggest that the variability visible in ILRTs would prevent such methods from being used for this class of transient, and any others showing evidence of variabilityComment: 14 pages, 10 figures, submitted to MNRA

    Signatures of an eruptive phase before the explosion of the peculiar core-collapse SN 2013gc

    Get PDF
    We present photometric and spectroscopic analysis of the peculiar core-collapse SN 2013gc, spanning seven years of observations. The light curve shows an early maximum followed by a fast decline and a phase of almost constant luminosity. At +200 days from maximum, a brightening of 1 mag is observed in all bands, followed by a steep linear luminosity decline after +300 d. In archival images taken between 1.5 and 2.5 years before the explosion, a weak source is visible at the supernova location, with mag\approx20. The early supernova spectra show Balmer lines, with a narrow (\sim560 km s1^{-1}) P-Cygni absorption superimposed on a broad (\sim3400 km s1^{-1}) component, typical of type IIn events. Through a comparison of colour curves, absolute light curves and spectra of SN 2013gc with a sample of supernovae IIn, we conclude that SN 2013gc is a member of the so-called type IId subgroup. The complex profile of the Hα\alpha line suggests a composite circumstellar medium geometry, with a combination of lower velocity, spherically symmetric gas and a more rapidly expanding bilobed feature. This circumstellar medium distribution has been likely formed through major mass-loss events, that we directly observed from 3 years before the explosion. The modest luminosity (MI16.5M_I\sim-16.5 near maximum) of SN 2013gc at all phases, the very small amount of ejected 56^{56}Ni (of the order of 10310^{-3} M_\odot), the major pre-supernova stellar activity and the lack of prominent [O I] lines in late-time spectra support a fall-back core-collapse scenario for the massive progenitor of SN~2013gc.Comment: 20 pages, 11 figures, 8 tables, accepted by MNRA

    Observations of Type Ia Supernova 2014J for Nearly 900 Days and Constraints on Its Progenitor System

    Get PDF
    We present extensive ground-based and Hubble Space TelescopeHubble~Space~Telescope (HSTHST) photometry of the highly reddened, very nearby type Ia supernova (SN Ia) 2014J in M82, covering the phases from 9 days before to about 900 days after the BB-band maximum. SN 2014J is similar to other normal SNe Ia near the maximum light, but it shows flux excess in the BB band in the early nebular phase. This excess flux emission can be due to light scattering by some structures of circumstellar materials located at a few 1017^{17} cm, consistent with a single degenerate progenitor system or a double degenerate progenitor system with mass outflows in the final evolution or magnetically driven winds around the binary system. At t\sim+300 to \sim+500 days past the BB-band maximum, the light curve of SN 2014J shows a faster decline relative to the 56^{56}Ni decay. Such a feature can be attributed to the significant weakening of the emission features around [Fe III] λ\lambda4700 and [Fe II] λ\lambda5200 rather than the positron escape as previously suggested. Analysis of the HSTHST images taken at t>>600 days confirms that the luminosity of SN 2014J maintains a flat evolution at the very late phase. Fitting the late-time pseudo-bolometric light curve with radioactive decay of 56^{56}Ni, 57^{57}Ni and 55^{55}Fe isotopes, we obtain the mass ratio 57^{57}Ni/56^{56}Ni as 0.035±0.0110.035 \pm 0.011, which is consistent with the corresponding value predicted from the 2D and 3D delayed-detonation models. Combined with early-time analysis, we propose that delayed-detonation through single degenerate scenario is most likely favored for SN 2014J.Comment: 28 pages, 12 figures. Accepted for publication in Ap

    Observations of the low-luminosity Type Iax supernova 2019gsc: a fainter clone of SN 2008ha?

    Get PDF
    We present optical photometric and spectroscopic observations of the faint-and-fast evolving Type Iax supernova (SN) 2019gsc, extending from the time of g-band maximum until about 50 d post-maximum, when the object faded to an apparent r-band magnitude m(r )= 22.48 +/- 0.11 mag. SN 2019gsc reached a peak luminosity of only M-g = -13.58 +/- 0.15 mag, and is characterized with a post-maximum decline rate Delta m(15)(g) = 1.08 +/- 0.14 mag. These light curve parameters are comparable to those measured for SN 2008ha of M-g = -13.89 +/- 0.14 mag at peak and Delta m(15)(g) =1.80 +/- 0.03 mag. The spectral features of SN 2019gsc also resemble those of SN 2008ha at similar phases. This includes both the extremely low ejecta velocity at maximum, similar to 3000 km s(-1) and at late-time (phase +54 d) strong forbidden iron and cobalt lines as well as both forbidden and permitted calcium features. Furthermore, akin to SN 2008ha, the bolometric light curve of SN 2019gsc is consistent with the production of approximate to 0.003 +/- 0.001 M-circle dot of Ni-56. The explosion parameters, M-ej approximate to 0.13 M-circle dot and E-k approximate to 12 x 10(48) erg, are also similar to those inferred for SN 2008ha. We estimate a subsolar oxygen abundance for the host galaxy of SN 2019gsc (12 + log(10)(O/H) =8.10 +/- 0.18 dex), consistent with the equally metal-poor environment of SN 2008ha. Altogether, our data set for SN 2019gsc indicates that this is a member of a small but growing group of extreme SN Iax that includes SN 2008ha and SN 2010ae

    Observations of A Fast-Expanding and UV-Bright Type Ia Supernova SN 2013gs

    Get PDF
    In this paper, we present extensive optical and ultraviolet (UV) observations of the type Ia supernova (SN Ia) 2013gs discovered during the Tsinghua-NAOC Transient Survey. The photometric observations in the optical show that the light curves of SN 2013gs is similar to that of normal SNe Ia, with an absolute peak magnitude of MBM_{B} = -19.25 ±\pm 0.15 mag and a post-maximum decline rate Δ\Deltam15_{15}(B) = 1.00 ± \pm 0.05 mag. \emph{Gehrels Swift} UVOT observations indicate that SN 2013gs shows unusually strong UV emission (especially in the uvw1uvw1 band) at around the maximum light (Muvw1_{uvw1} \sim -18.9 mag). The SN is characterized by relatively weak Fe~{\sc ii} {\sc iii} absorptions at \sim 5000{\AA} in the early spectra and a larger expansion velocity (vSiv_{Si} \sim 13,000 km s1^{-1} around the maximum light) than the normal-velocity SNe Ia. We discuss the relation between the uvw1vuvw1-v color and some observables, including Si~{\sc ii} velocity, line strength of Si~{\sc ii} λ\lambda6355, Fe~{\sc ii}/{\sc iii} lines and Δm15\Delta m_{15}(B). Compared to other fast-expanding SNe Ia, SN 2013gs exhibits Si and Fe absorption lines with similar strength and bluer uvw1vuvw1-v color. We briefly discussed the origin of the observed UV dispersion of SNe Ia.Comment: 31 pages, 10 figures, accepted to publish in Ap

    SN 2022vqz: A Peculiar SN 2002es-like Type Ia Supernova with Prominent Early Excess Emission

    Full text link
    We present extensive photometric and spectroscopic observations of a peculiar type Ia supernova (SN Ia) 2022vqz. It shares many similarities with the SN 2002es-like SNe Ia, such as low luminosity (i.e., MB,max=18.11±0.16M_{B,\rm max}=-18.11\pm0.16 mag) and moderate post-peak decline rate (i.e., Δm15,B=1.33±0.11\Delta m_{15,B}=1.33\pm0.11 mag). The nickel mass synthesized in the explosion is estimated as 0.20±0.04 M0.20\pm0.04~{\rm M}_\odot from the bolometric light curve, which is obviously lower than normal SNe Ia. SN 2022vqz is also characterized by a slow expanding ejecta, with Si II velocities persisting around 7000 km s1^{-1} since 16 days before the peak, which is unique among all known SNe Ia. While all these properties imply a less energetic thermonuclear explosion that should leave considerable amount of unburnt materials, however, absent signature of unburnt carbon in the spectra of SN 2022vqz is puzzling. A prominent early peak is clearly detected in the cc- and oo-band light curves of ATLAS and in the grgr-band data of ZTF within days after the explosion. Possible mechanisms for the early peak are discussed, including sub-Chandrasekhar mass double detonation model and interaction of SN ejecta with circumstellar material (CSM). We found both models face some difficulties in replicating all aspects of the observed data. As an alternative, we propose a hybrid CONe white dwarf as progenitor of SN 2022vqz which can simultaneously reconcile the tension between low ejecta velocity and absence of carbon. We further discuss the diversity of 02es-like objects and possible origins of different scenarios.Comment: 24 pages, 12 figures, submitted to MNRA

    A Multi-Wavelength View on the Rapidly-Evolving Supernova 2018ivc: An Analog of SN IIb 1993J but Powered Primarily by Circumstellar Interaction

    Get PDF
    SN 2018ivc is an unusual type II supernova (SN II). It is a variant of SNe IIL, which might represent a transitional case between SNe IIP with a massive H-rich envelope, and IIb with only a small amount of the H-rich envelope. However, SN 2018ivc shows an optical light curve evolution more complicated than canonical SNe IIL. In this paper, we present the results of prompt follow-up observations of SN 2018ivc with the Atacama Large Millimeter/submillimeter Array (ALMA). Its synchrotron emission is similar to that of SN IIb 1993J, suggesting that it is intrinsically an SN IIb-like explosion of a He star with a modest (~0.5 - 1 Msun) extended H-rich envelope. Its radio, optical, and X-ray light curves are explained primarily by the interaction between the SN ejecta and the circumstellar material (CSM); we thus suggest that it is a rare example (and the first involving the `canonical' SN IIb ejecta) for which the multi-wavelength emission is powered mainly by the SN-CSM interaction. The inner CSM density, reflecting the progenitor activity in the final decade, is comparable to that of SN IIb 2013cu that showed a flash spectral feature. The outer CSM density, and therefore the mass-loss rate in the final ~200 years, is larger than that of SN 1993J by a factor of ~5. We suggest that SN 2018ivc represents a missing link between SNe IIP and IIb/Ib/Ic in the binary evolution scenario.Comment: 31 pages, 14 figures, 3 tables. Accepted for publication in Ap

    Low luminosity Type II supernovae - IV. SN 2020cxd and SN 2021aai, at the edges of the sub-luminous supernovae class

    Get PDF
    Photometric and spectroscopic data for two Low Luminosity Type IIP Supernovae (LL SNe IIP) 2020cxd and 2021aai are presented. SN 2020cxd was discovered 2 d after explosion at an absolute magnitude of Mr = -14.02 ± 0.21 mag, subsequently settling on a plateau which lasts for ∼120 d. Through the luminosity of the late light curve tail, we infer a synthesized 56Ni mass of (1.8 ± 0.5) × 10-3 M⊙. During the early evolutionary phases, optical spectra show a blue continuum (T>T\, \gt 8000 K) with broad Balmer lines displaying a P Cygni profile, while at later phases, Ca ii, Fe ii, Sc ii, and Ba ii lines dominate the spectra. Hydrodynamical modelling of the observables yields RR\, \simeq 575 R⊙ for the progenitor star, with Mej = 7.5 M⊙ and EE\, \simeq 0.097 foe emitted during the explosion. This low-energy event originating from a low-mass progenitor star is compatible with both the explosion of a red supergiant (RSG) star and with an Electron Capture Supernova arising from a super asymptotic giant branch star. SN 2021aai reaches a maximum luminosity of Mr = -16.57 ± 0.23 mag (correcting for AV = 1.92 mag), at the end of its remarkably long plateau (∼140 d). The estimated 56Ni mass is (1.4 ± 0.5) × 10-2 M⊙. The expansion velocities are compatible with those of other LL SNe IIP (few 103 km s-1). The physical parameters obtained through hydrodynamical modelling are RR\, \simeq 575 R⊙, Mej = 15.5 M⊙, and E = 0.4 foe. SN 2021aai is therefore interpreted as the explosion of an RSG, with properties that bridge the class of LL SNe IIP with standard SN IIP events.GV acknowledges INAF for funding his PhD fellowship within the PhD School in Astronomy at the University of Padova. MLP acknowledges support from the plan ‘programma ricerca di ateneo UNICT 2020-22 linea 2” of the University of Catania. AR acknowledges support from ANID BECAS/DOCTORADO NACIONAL 21202412. NER acknowledges partial support from MIUR, PRIN 2017 (grant 20179ZF5KS), from the Spanish MICINN grant PID2019-108709GB-I00 and FEDER funds, and from the programme Unidad de Excelencia María de Maeztu CEX2020-001058-M. LG acknowledges financial support from the Spanish Ministerio de Ciencia e Innovación (MCIN), the Agencia Estatal de Investigación (AEI) 10.13039/501100011033, and the European Social Fund (ESF) ‘Investing in your future’ under the 2019 Ramón y Cajal programme RYC2019-027683-I and the PID2020-115253GA-I00 HOSTFLOWS project, from Centro Superior de Investigaciones Científicas (CSIC) under the PIE project 20215AT016, and the programme Unidad de Excelencia María de Maeztu CEX2020-001058-M. TMB acknowledges financial support from the Spanish Ministerio de Ciencia e Innovación (MCIN), the Agencia Estatal de Investigación (AEI) 10.13039/501100011033 under the PID2020-115253GA-I00 HOSTFLOWS project, and from Centro Superior de Investigaciones Científicas (CSIC) under the PIE project 20215AT016, and the programme Unidad de Excelencia María de Maeztu CEX2020-001058-M. Y-ZC is funded by China Postdoctoral Science Foundation (grant no. 2021M691821
    corecore