3 research outputs found

    Breast cancer-secreted miR-939 downregulates VE-cadherin and destroys the barrier function of endothelial monolayers.

    Get PDF
    Abstract Exosomes-secreted microRNAs play an important role in metastatic spread. During this process breast cancer cells acquire the ability to transmigrate through blood vessels by inducing changes in the endothelial barrier. We focused on miR-939 that is predicted to target VE-cadherin, a component of adherens junction involved in vessel permeability. By in silico analysis miR-939 was found highly expressed in the basal-like tumor subtypes and in our cohort of 63 triple-negative breast cancers (TNBCs) its expression significantly interacted with lymph node status in predicting disease-free survival probability. We demonstrated, in vitro , that miR-939 directly targets VE-cadherin leading to an increase in HUVECs monolayer permeability. MDA-MB-231 cells transfected with a miR-939 mimic, released miR-939 in exosomes that, once internalized in endothelial cells, favored trans-endothelial migration of MDA-MB-231-GFP cells by the disruption of the endothelial barrier. Notably, when up taken in endothelial cells exosomes caused VE-cadherin down-regulation specifically through miR-939 as we demonstrated by inhibiting miR-939 expression in exosomes-releasing TNBC cells. Together, our data indentify an extracellular pro-tumorigenic role for tumor-derived, exosome-associated miR-939 that can explain its association with worse prognosis in TNBCs

    HER2 mRNA Levels, Estrogen Receptor Activity and Susceptibility to Trastuzumab in Primary Breast Cancer

    No full text
    While the results thus far demonstrate the clinical benefit of trastuzumab in breast cancer (BC), some patients do not respond to this drug. HER2 mRNA, alone or combined with other genes/biomarkers, has been proven to be a powerful predictive marker in several studies. Here, we provide evidence of the association between HER2 mRNA levels and the response to anti-HER2 treatment in HER2-positive BC patients treated with adjuvant trastuzumab and show that this association is independent of estrogen receptor (ER) tumor positivity. While HER2 mRNA expression was significantly correlated with HER2 protein levels in ER-negative tumors, no correlation was found in ER-positive tumors, and HER2 protein expression was not associated with relapse risk. Correlation analyses in the ER-positive subset identified ER activity as the pathway inversely associated with HER2 mRNA. Associations between HER2 levels and oncogene addiction, as well as between HER2 activation and trastuzumab sensitivity, were also observed in vitro in HER2-positive BC cell lines. In ER-positive but not ER-negative BC cells, HER2 transcription was increased by reducing ligand-dependent ER activity or inducing ER degradation. Accordingly, HER2 mRNA levels in patients were found to be inversely correlated with blood levels of estradiol, the natural ligand of ER that induces ER activation. Moreover, low estradiol levels were associated with a lower risk of relapse in HER2-positive BC patients treated with adjuvant trastuzumab. Overall, we found that HER2 mRNA levels, but not protein levels, indicate the HER2 dependency of tumor cells and low estrogen-dependent ER activity in HER2-positive tumors
    corecore