140 research outputs found

    Hemispheric specialization in spatial versus ordinal processing in the day-old domestic chick (Gallus gallus)

    Get PDF
    Different species show an intriguing similarity in representing numerosity in space, starting from left to right. This bias has been attributed to a right hemisphere dominance in processing spatial information. Here, to disentangle the role of each hemisphere in dealing with spatial versus ordinal-numerical information, we tested domestic chicks during monocular versus binocular vision. In the avian brain, the contralateral hemisphere mainly processes the visual input from each eye. Four-day-old chicks learned to peck at the fourth element in a sagittal series of 10 identical elements. At testing, chicks faced a left-to-right-oriented series where the interelement distance was manipulated so that the third element was where the fourth had been at training; this compelled chicks to use either spatial or ordinal cues. Chicks tested binocularly selected both the fourth left and (to a lesser extent) right elements. Chicks tested monocularly chose the third and fourth elements on the seeing side equally. Interhemispheric cooperation resulted in the use of ordinal-numerical information, while each single hemisphere could rely on spatial or ordinal-numerical cue. Both hemispheres can process spatial and ordinal-numerical information, but their interaction results in the supremacy of processing the ordinal-numerical cue

    Pitch-Luminance Crossmodal Correspondence in the Baby Chick: An Investigation on Predisposed and Learned Processes.

    Get PDF
    Our senses are constantly reached by a multitude of stimuli from all different sensory modalities. To create a coherent representation of the environment, we must integrate the various unimodal inputs that refer to the same object into a single multimodal representation. In some cases, however, we tend to bind certain properties of the stimuli without any apparent reason, which is a phenomenon named crossmodal correspondence. For instance, we match a spiky or a rounded shape with the sound "Kiki" or "Bouba", respectively. Similarly, we associate the left hemispace with low luminance and the right one with high luminance. Instances of crossmodal correspondences were described also in other mammals, and recently, a case of space-luminance crossmodal correspondence was reported in birds (i.e., domestic chicks). Here, we investigate the presence of pitch-luminance crossmodal correspondence in three-day-old chicks, employing experimental methods that exploit either predisposed or learned processes. While failing to report evidence for this phenomenon, we discuss the difference between statistical and structural crossmodal correspondences and the possible role of environmental factors in determining their emergence. Moreover, we discuss the importance of the different experimental methodologies to investigate distinct aspects of this perceptual phenomenon to reach a deeper understanding and unveil the role of innate vs. learned mechanisms

    Individually distinctive features facilitate numerical discrimination of sets of objects in domestic chicks

    Get PDF
    Day-old domestic chicks approach the larger of two groups of identical objects, but in a 3 vs 4 comparison, their performance is random. Here we investigated whether adding individually distinctive features to each object would facilitate such discrimination. Chicks reared with 7 objects were presented with the operation 1 + 1 + 1 vs 1 + 1 + 1 + 1. When objects were all identical, chicks performed randomly, as expected (Experiment 1). In the remaining experiments, objects differed from one another due to additional features. Chicks succeeded when those features were differently oriented segments (Experiment 2) but failed when the features were arranged to depict individually different face-like displays (Experiment 3). Discrimination was restored if the face-like stimuli were presented upside-down, disrupting global processing (Experiment 4). Our results support the claim that numerical discrimination in 3 vs 4 comparison benefits from the presence of distinctive features that enhance object individuation due to individual processing. Interestingly, when the distinctive features are arranged into upright face-like displays, the process is susceptible to global over local interference due to configural processing. This study was aimed at assessing whether individual object processing affects numerical discrimination. We hypothesise that in humans similar strategies aimed at improving performance at the non-symbolic level may have positive effects on symbolic mathematical abilities

    Numerical magnitude, rather than individual bias, explains spatial numerical association in newborn chicks

    Get PDF
    We associate small numbers with the left and large numbers with the right side of space. Recent evidence from human newborns and non-human animals has challenged the primary role assigned to culture, in determining this spatial numerical association (SNA). Nevertheless, the effect of individual spatial biases has not been considered in previous research. Here, we tested the effect of numerical magnitude in SNA and we controlled for itablendividual biases. We trained 3-day-old chicks (Gallus gallus) on a given numerical magnitude (5). Then chicks could choose between two identical, left or right, stimuli both representing either 2, 8, or 5 elements. We computed the percentage of Left-sided Choice (LC). Numerical magnitude, but not individual lateral bias, explained LC: LC2 vs. 2>LC5 vs. 5>LC8 vs. 8. These findings suggest that SNA originates from pre-linguistic precursors, and pave the way to the investigation of the neural correlates of the number space association

    Response of male and female domestic chicks to change in the number (quantity) of imprinting objects

    Get PDF
    When facing two sets of imprinting objects of different numerousness, domestic chicks prefer to approach the larger one. Given that choice for familiar and novel stimuli in imprinting situations is known to be affected by the sex of the animals, we investigated how male and female domestic chicks divide the time spent in the proximity of a familiar versus an unfamiliar number of objects, and how animals interact (by pecking) with these objects. We confirmed that chicks discriminate among the different numerousnesses, but we also showed that females and males behave differently, depending on the degree of familiarity of the objects. When objects in the testing sets were all familiar, females equally explored both sets and pecked at all objects individually. Males instead selectively approached the familiar numerousness and pecked more at it. When both testing sets comprised familiar as well as novel objects, both males and females approached the larger numerousness of familiar objects. However, chicks directed all their pecks toward the novel object within the set. Differences in the behavior of males and females can be accounted for in terms of sex difference in the motivation to reinstate social contact with the familiar objects and to explore novel ones, likely associated with the ecology and the social structure of the species before domestication

    Use of numerical and spatial information in ordinal counting by zebrafish

    Get PDF
    The use of non-symbolic numerical information is widespread throughout the animal kingdom, providing adaptive benefits in several ecological contexts. Here we provide the possible evidence of ordinal numerical skills in zebrafish (Danio rerio). Zebrafish were trained to identify the second exit in a series of five identically-spaced exits along a corridor. When at test the total length of the corridor (Exp. 1) or the distance between exits (Exp. 2) was changed, zebrafish appeared not to use the absolute spatial distance. However, zebrafish relied both on ordinal as well as spatial cues when the number of exits was increased (from 5 to 9) and the inter-exit distance was reduced (Exp. 3), suggesting that they also take into account relative spatial information. These results highlight that zebrafish may provide a useful model organism for the study of the genetic bases of non-symbolic numerical and spatial cognition, and of their interaction

    Lateralized declarative-like memory for conditional spatial information in domestic chicks (Gallus gallus)

    Get PDF
    Declarative memory is an explicit, long-term memory system, used in generalization and categorization processes and to make inferences and to predict probable outcomes in novel situations. Animals have been proven to possess a similar declarative-like memory system. Here, we investigated declarative-like memory representations in young chicks, assessing the roles of the two hemispheres in memory recollection. Chicks were exposed for three consecutive days to two different arenas (blue/yellow), where they were presented with two panels, each depicting a different stimulus (cross/square). Only one of the two stimuli was rewarded, i.e., it hid a food reward. The position (left/right) of the rewarded stimulus remained constant within the same arena, but it differed between the two arenas (e.g., reward always on the left in the blue context and on the right in the yellow one). At test, both panels depicted the rewarded stimulus, thus chicks had to remember food position depending on the previously experienced contextual rule. Both binocular and right-eye monocularly-tested chicks correctly located the reward, whereas left-eye monocularly-tested chicks performed at the chance level. We showed that declarative-like memory of integrated information is available at early stages of development, and it is associated with a left hemisphere dominance

    Visual Laterality of Calf–Mother Interactions in Wild Whales

    Get PDF
    Behavioral laterality is known for a variety of vertebrate and invertebrate animals. Laterality in social interactions has been described for a wide range of species including humans. Although evidence and theoretical predictions indicate that in social species the degree of population level laterality is greater than in solitary ones, the origin of these unilateral biases is not fully understood. It is especially poorly studied in the wild animals. Little is known about the role, which laterality in social interactions plays in natural populations. A number of brain characteristics make cetaceans most suitable for investigation of lateralization in social contacts.) in the greatest breeding aggregation in the White Sea. Here we show that young calves (in 29 individually identified and in over a hundred of individually not recognized mother-calf pairs) swim and rest significantly longer on a mother's right side. Further observations along with the data from other cetaceans indicate that found laterality is a result of the calves' preference to observe their mothers with the left eye, i.e., to analyze the information on a socially significant object in the right brain hemisphere.Data from our and previous work on cetacean laterality suggest that basic brain lateralizations are expressed in the same way in cetaceans and other vertebrates. While the information on social partners and novel objects is analyzed in the right brain hemisphere, the control of feeding behavior is performed by the left brain hemisphere. Continuous unilateral visual contacts of calves to mothers with the left eye may influence social development of the young by activation of the contralateral (right) brain hemisphere, indicating a possible mechanism on how behavioral lateralization may influence species life and welfare. This hypothesis is supported by evidence from other vertebrates

    Bonobos, chimpanzees, gorillas, and orang utans use feature and spatial cues in two spatial memory tasks

    Get PDF
    Animals commonly use feature and spatial strategies when remembering places of interest such as food sources or hiding places. We conducted three experiments with great apes to investigate strategy preferences and factors that may shape them. In the first experiment, we trained 17 apes to remember 12 different food locations on the floor of their sleeping room. The 12 food locations were associated with one feature cue, so that feature and spatial cues were confounded. In a single test session, we brought the cues into conflict and found that apes, irrespective of species, showed a preference for a feature strategy. In the second experiment, we used a similar procedure and trained 25 apes to remember one food location on a platform in front of them. On average, apes preferred to use a feature strategy but some individuals relied on a spatial strategy. In the final experiment, we investigated whether training might influence strategy preferences. We tested 21 apes in the platform set-up and found that apes used both, feature and spatial strategies irrespective of training. We conclude that apes can use feature and spatial strategies to remember the location of hidden food items, but that task demands (e.g. different numbers of search locations) can influence strategy preferences. We found no evidence, however, for the role of training in shaping these preferences

    Consistency and flexibility in solving spatial tasks: different horses show different cognitive styles

    Get PDF
    Individual animals vary in their behaviour and reactions to novel situations. These differences may extend to differences in cognition among individuals. We tested twenty-six horses for their ability to detour around symmetric and asymmetric obstacles. All of the animals were able to get around the barrier to reach a food target, but varied in their approach. Some horses moved slowly but were more accurate in choosing the shortest way. Other horses acted quickly, consistently detoured in the same direction, and did not reliably choose the shortest way. The remaining horses shifted from a faster, directionally consistent response with the symmetric barrier, to a slower but more accurate response with the asymmetric barrier. The asymmetric barrier induced a reduction in heart rate variability, suggesting that this is a more demanding task. The different approaches used to solve the asymmetric task may reflect distinct cognitive styles in horses, which vary among individuals, and could be linked to different personality traits. Understanding equine behaviour and cognition can inform horse welfare and management
    • …
    corecore