1,081 research outputs found

    Tunneling-driven breakdown of the 331 state and the emergent Pfaffian and composite Fermi liquid phases

    Full text link
    We examine the possibility of creating the Moore-Read Pfaffian in the lowest Landau level when the multicomponent Halperin 331 state (believed to describe quantum Hall bilayers and wide quantum wells at the filling factor ν=1/2\nu=1/2) is destroyed by the increase of tunneling. Using exact diagonalization of the bilayer Hamiltonian with short-range and long-range (Coulomb) interactions in spherical and periodic rectangular geometries, we establish that tunneling is a perturbation that drives the 331 state into a compressible composite Fermi liquid, with the possibility for an intermediate critical state that possesses some properties of the Moore-Read Pfaffian. These results are interpreted in the two-component BCS model for Cauchy pairing with a tunneling constraint. We comment on the conditions to be imposed on a system with fluctuating density in order to achieve the stable Pfaffian phase.Comment: 10 pages, 7 figure

    Evidence for an incommensurate magnetic resonance in La(2-x)Sr(x)CuO(4)

    Full text link
    We study the effect of a magnetic field (applied along the c-axis) on the low-energy, incommensurate magnetic fluctuations in superconducting La(1.82)Sr(0.18)CuO(4). The incommensurate peaks at 9 meV, which in zero-field were previously shown to sharpen in q on cooling below T_c [T. E. Mason et al., Phys. Rev. Lett. 77, 1604 (1996)], are found to broaden in q when a field of 10 T is applied. The applied field also causes scattered intensity to shift into the spin gap. We point out that the response at 9 meV, though occurring at incommensurate wave vectors, is comparable to the commensurate magnetic resonance observed at higher energies in other cuprate superconductors.Comment: 8 pages, including 4 figure

    Evidence for short-range antiferromagnetic fluctuations in Kondo-insulating YbB12

    Get PDF
    The spin dynamics of mixed-valence YbB12 has been studied by inelastic neutron scattering on a high-quality single crystal. In the Kondo-insulating regime realized at low temperature, the spectra exhibit a spin-gap structure with two sharp, dispersive, in-gap excitations at E = 14.5 and approximately 20 meV. The lower mode is shown to be associated with short-range correlations near the antiferromagnetic wave vector q0 = (1/2, 1/2, 1/2). Its properties are in overall agreement with those expected for a "spin exciton'' branch in an indirect hybridization gap semiconductor.Comment: 4 pages, 4 figures ; submitted to Physical Review Letter

    Shifting of the magnetic resonance peak to lower energy in the superconducting state of underdoped YBa_2Cu_3O_{6.8}

    Full text link
    Inelastic neutron scattering has been used to determine the dynamic spin fluctuations in an underdoped high temperature superconductor YBCO_{6.8} single crystal. The magnetic resonance, that occurs around 40 meV in overdoped samples, is shifted to a lower energy, E_r= 34 meV. A constant ratio, Er/kBTC=4.9±0.2E_r/ k_B T_C= 4.9 \pm 0.2, almost independent of the doping level, is found. According to numerous theoretical approaches, this finding supports the idea that the resonance energy is proportional (approximately twice) to the superconducting gap.Comment: 8 pages, 3 figures, accepted in Europhysics Lette

    The plasma picture of the fractional quantum Hall effect with internal SU(K) symmetries

    Full text link
    We consider trial wavefunctions exhibiting SU(K) symmetry which may be well-suited to grasp the physics of the fractional quantum Hall effect with internal degrees of freedom. Systems of relevance may be either spin-unpolarized states (K=2), semiconductors bilayers (K=2,4) or graphene (K=4). We find that some introduced states are unstable, undergoing phase separation or phase transition. This allows us to strongly reduce the set of candidate wavefunctions eligible for a particular filling factor. The stability criteria are obtained with the help of Laughlin's plasma analogy, which we systematically generalize to the multicomponent SU(K) case. The validity of these criteria are corroborated by exact-diagonalization studies, for SU(2) and SU(4). Furthermore, we study the pair-correlation functions of the ground state and elementary charged excitations within the multicomponent plasma picture.Comment: 13 pages, 7 figures; reference added, accepted for publication in PR

    Kinetics of the Multiferroic Switching in MnWO4_4

    Get PDF
    The time dependence of switching multiferroic domains in MnWO4_4 has been studied by time-resolved polarized neutron diffraction. Inverting an external electric field inverts the chiral magnetic component within rise times ranging between a few and some tens of milliseconds in perfect agreement with macroscopic techniques. There is no evidence for any faster process in the inversion of the chiral magnetic structure. The time dependence is well described by a temperature-dependent rise time suggesting a well-defined process of domain reversion. As expected, the rise times decrease when heating towards the upper boundary of the ferroelectric phase. However, switching also becomes faster upon cooling towards the lower boundary, which is associated with a first-order phase transition

    Photometry of supernovae in an image series : methods and application to the Supernova Legacy Survey (SNLS)

    Full text link
    We present a technique to measure lightcurves of time-variable point sources on a spatially structured background from imaging data. The technique was developed to measure light curves of SNLS supernovae in order to infer their distances. This photometry technique performs simultaneous PSF photometry at the same sky position on an image series. We describe two implementations of the method: one that resamples images before measuring fluxes, and one which does not. In both instances, we sketch the key algorithms involved and present the validation using semi-artificial sources introduced in real images in order to assess the accuracy of the supernova flux measurements relative to that of surrounding stars. We describe the methods required to anchor these PSF fluxes to calibrated aperture catalogs, in order to derive SN magnitudes. We find a marginally significant bias of 2 mmag of the after-resampling method, and no bias at the mmag accuracy for the non-resampling method. Given surrounding star magnitudes, we determine the systematic uncertainty of SN magnitudes to be less than 1.5 mmag, which represents about one third of the current photometric calibration uncertainty affecting SN measurements. The SN photometry delivers several by-products: bright star PSF flux mea- surements which have a repeatability of about 0.6%, as for aperture measurements; we measure relative astrometric positions with a noise floor of 2.4 mas for a single-image bright star measurement; we show that in all bands of the MegaCam instrument, stars exhibit a profile linearly broadening with flux by about 0.5% over the whole brightness range.Comment: Accepted for publication in A&A. 20 page

    A single chain analysis of doped quasi one dimensional spin 1 compounds: paramagnetic versus spin 1/2 doping

    Full text link
    We present a numerical study of single chain models of doped spin 1 compounds. We use low energy effective one-dimensional models for both the cases of paramagnetic and spin-1/2 doping. In the case of paramagnetic doping, the effective model is equivalent to the bond disordered spin-1/2 chain model recently analyzed by means of real space renormalization group by Hyman and Yang. By means of exact diagonalizations in the XX limit, we confirm the stability of the Haldane phase for weak disorder. Above a critical amount of disorder, the effective model flows to the so called random singlet fixed point. In the case of spin-1/2 doping, we argue that the Haldane phase should be destabilized even for weak disorder. This picture is not in contradiction with existing experimental data. We also discuss the possible occurrence of (unobserved) antiferromagnetically ordered phases.Comment: 13 pages, 7 included figure

    Magnetic ground state and 2D behavior in pseudo-Kagome layered system Cu3Bi(SeO3)2O2Br

    Full text link
    Anisotropic magnetic properties of a layered kagome-like system Cu3Bi(SeO3)2O2Br have been studied by bulk magnetization and magnetic susceptibility measurements as well as powder and single-crystal neutron diffraction. At T_N = 27.4 K the system develops an alternating antiferromagnetic order of (ab) layers, which individually exhibit canted ferrimagnetic moment arrangement, resulting from the competing ferro- and antiferro-magnetic intralayer exchange interactions. A magnetic field B_C ~ 0.8 T applied along the c axis (perpendicular to the layers) triggers a metamagnetic transition, when every second layer flips, i.e., resulting in a ferrimagnetic structure. Significantly higher fields are required to rotate the ferromagnetic component towards the b axis (~7 T) or towards the a axis (~15 T). The estimates of the exchange coupling constants and features indicative of an XY character of this quasi-2D system are presented.Comment: 7 pages, 6 figures, final versio
    corecore