7 research outputs found

    Mechanisms and parameters controlling the tricalcium aluminate reactivity in the presence of gypsum.

    No full text
    International audienceTo understand the mechanisms and the parameters controlling the reactivity of tricalcium aluminate in the presence of gypsum at an early age, a study of the hydration of the “C3A–sulphate” system by isothermal microcalorimetry, conductimetry and a monitoring of the ionic concentrations of diluted system suspensions have been carried out with various gypsum quantities. The role of C3A source and its fineness were also studied. This work shows the fast initial formation of AFm phase followed by ettringite formation during the period when the sulphate is consumed. It has been highlighted that the time necessary to consume all the gypsum varies with the type of C3A and it has been attributed to the intrinsic reactivity of each one and mainly to the change of fineness from one C3A to another. Results are discussed alongside hypothesis from the literature to explain the slowing down of C3A hydration process in the presence of calcium sulphate

    Fulminant hepatic failure associated with status epilepticus in children: three cases and a review of potential mechanisms

    No full text
    Fulminant hepatic failure is a rare complication of status epilepticus. Although many of the anticonvulsants used to treat the seizures are known to have hepatotoxic properties, the exact mechanism leading to massive destruction of the liver following a prolonged seizure remains unclear. Three children are presented who developed fulminant hepatic failure following status epilepticus and subsequently died of multiple organ failure. The literature is reviewed with particular attention to the possible interaction between the anticonvulsants and the metabolic consequences of status epilepticus. We postulate that it is a combination of hypoxia and ischemia that occurs during a prolonged seizure with altered metabolism of free radicals secondary to the anticonvulsant drugs which leads to widespread hepatocyte membrane damag

    A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator

    No full text
    International audienceThe European XFEL is a hard X-ray free-electron laser (FEL) based on a high-electron-energy superconducting linear accelerator. The superconducting technology allows for the acceleration of many electron bunches within one radio-frequency pulse of the accelerating voltage and, in turn, for the generation of a large number of hard X-ray pulses. We report on the performance of the European XFEL accelerator with up to 5,000 electron bunches per second and demonstrating a full energy of 17.5 GeV. Feedback mechanisms enable stabilization of the electron beam delivery at the FEL undulator in space and time. The measured FEL gain curve at 9.3 keV is in good agreement with predictions for saturated FEL radiation. Hard X-ray lasing was achieved between 7 keV and 14 keV with pulse energies of up to 2.0 mJ. Using the high repetition rate, an FEL beam with 6 W average power was created
    corecore