167 research outputs found

    Identification of two new core chromosome-encoded superantigens in Streptococcus pyogenes; speQ and speR

    Get PDF
    Superantigens are ubiquitous within the Streptococcus pyogenes genome, which suggests that superantigen-mediated T-cell activation provides a significant selective advantage. S. pyogenes can carry a variable complement of the 11 known superantigens. We have identified two novel S. pyogenes superantigens, denoted speQ and speR, adjacent to each other in the core-chromosome of isolates belonging to eleven different emm-types. Although distinct from other superantigens, speQ and speR were most closely related to speK and speJ respectively. Recombinant SPEQ and SPER were mitogenic towards human peripheral blood mononuclear cells at ng/ml concentrations, and SPER was found to be more mitogenic than SPEQ

    Coinage metal complexes of a boron substituted soft scorpionate ligand

    No full text
    An improved synthesis of lithium phenyltris(methimazolyl)borate, Li[PhTm(Me)], (methimazole = 1-methylimidazole-2-thione) is described, and the structure of the methanol-solvated [Li(OHMe)4][PhTm(Me)] has been determined. The syntheses and characterization of complexes [M(PhTm(Me))(PR3)] (M = Cu, Ag, Au; R = Et, Ph;) are reported, and the complexes [Cu(PhTm(Me))(PPh3)], [Ag(PhTm(Me))(PEt3)] and [Au(PhTm(Me))(PEt3)] are crystallographically characterized, showing a progression from pseudo-tetrahedral geometry (copper, S3P coordination) to trigonal planar geometry (silver, S2P coordination) to linear geometry (gold, SP coordination). In addition, the copper(I) and silver(I) triphenylphosphine complexes of the adventitiously formed phenylhydrobis(methimazolyl)borate ligand, [M(PhBm(Me))(PPh3)], have been crystallographically characterized, showing both species to have a trigonal planar primary coordination sphere, with a secondary M...H-B interaction. Finally, reaction of copper(II) chloride with Li[PhTm(Me)] results in formation of a compound analyzing as [Cu(II)(PhTm(Me))Cl], although its extreme insolubility and marked instability have precluded its complete characterization. Attempts to prepare this by ultra-slow diffusion of the reactants through solvent blanks has led to isolation of a mixed-valence copper(I/II) methimazolate cluster, [Cu(I)10Cu(II)2(mt)12Cl2] and a copper(I) dimeric complex [Cu2(PhTm(Me))2], indicating that copper(II) ions oxidatively decompose the phenyltris(methimazolyl)borate anion

    Schiff base complexes of copper and zinc as potential anti-colitic compounds

    Get PDF
    The design, synthesis and activity of polymodal compounds for the treatment of inflammatory bowel disease are reported. The compounds, being based on a metal-Schiff base motif, are designed to degrade during intestinal transit to release the bioactive components in the gut. The compounds have been developed sequential with the biomodal compounds combining copper or zinc with a salicylaldehyde adduct. These compounds were tested in a formalin induced colonic inflammation model in BK:A mice. From these studies a trimodal compound based on a zinc Schiff base analogue of Sulfosalazine were designed. This was tested against a trinitrobenzenesulfonic acid (TNB) induced colitic model in Wistar rats. The use of two models allows us to test our compounds in both an acute and a chronic model. The trimodal compound reported is observed to provide anticolitic properties in the chronic TNB induced colitis model commensurate with that of SASP. However, the design of trimodal compound still has the capacity for further development. This the platform reported may offer a route into compounds which can markedly outperform the anti-colitic properties of SASP

    Detection of potentially toxic metals by SERS using salen complexes

    Get PDF
    Surfaced enhanced Raman scattering (SERS) can discriminate between metal complexes due to the characteristic “spectral fingerprints” obtained. As a result, SERS has the potential to develop relatively simple and sensitive methods of detecting and quantifying a range of metal ions in solution. This could be beneficial for the environmental monitoring of potentially toxic metals (PTMs). Here, salen (C16H16N2O2) was used as a ligand to form complexes of Ni(II), Cu(II), Mn(II) and Co(II) in solution. The SERS spectra showed characteristic spectral differences specific to each metal complex, thus allowing the identification of each of these metal ions. This method allows a number of metal ions to be detected using the same ligand and an identical preparation procedure. The limit of detection (LOD) was determined for each metal ion, and it was found that Ni(II), Cu(II) and Mn(II) could be detected below the WHO’s recommended limits in drinking water at 1, 2 and 2 µg L-1, respectively. Co(II) was found to have an LOD of 20 µg L-1, however no limit has been set for this ion by the WHO as the concentration of Co(II) in drinking water is generally <1-2 μg L-1. A contaminated water sample was also analysed where Mn(II) was detected at a level of 800 µg L-1

    The interaction of silver(II) complexes with biological macromolecules and antioxidants

    Get PDF
    Silver is widely used for its antimicrobial properties, but microbial resistance to heavy metals is increasing. Silver(II) compounds are more oxidizing and therefore have the potential to overcome resistance via extensive attack on cellular components, but have traditionally been hard to stabilize for biological applications. Here, the high oxidation state cation was stabilised using pyridinecarboxylate ligands, of which the 2,6-dicarboxypyridine Ag(II) complex (Ag2,6P) was found to have the best tractability. This complex was found to be more stable in phosphate buffer than DMSO, allowing studies of its interaction with water soluble antioxidants and biological macromolecules, with the aim of demonstrating its potential to oxidize them, as well as determining the reaction products. Spectrophotometric analysis showed that Ag2,6P was rapidly reduced by the antioxidants glutathione, ascorbic acid and vitamin E; the unsaturated lipids arachidonic and linoleic acids, model carbohydrate β-cyclodextrin, and protein cytochrome c also reacted readily. Analysis of the reaction with glutathione by NMR and electrospray mass spectrometry confirmed that the glutathione was oxidized to the disulfide form. Mass spectrometry also clearly showed the addition of multiple oxygen atoms to the unsaturated fatty acids, suggesting a radical mechanism, and cross-linking of linoleic acid was observed. The seven hydroxyl groups of β-cyclodextrin were found to be completely oxidized to the corresponding carboxylates. Treatment of cytochrome c with Ag2,6P led to protein aggregation and fragmentation, and dose-dependent oxidative damage was demonstrated by oxyblotting. Thus Ag2,6P was found to be highly oxidizing to a wide variety of polar and nonpolar biological molecules

    An Opsonophagocytic Killing Assay for the Evaluation of Group A Streptococcus Vaccine Antisera

    Get PDF
    Group A Streptococcus (GAS) is a major cause of global mortality, yet there are no licensed GAS vaccines. Vaccine progress has been hampered, in part, by a lack of standardized assays able to quantify antibody function in test antisera. The most widely used assay was developed over 50 years ago by Rebecca Lancefield and relies on human whole blood as a source of complement and neutrophils. Recently, an opsonophagocytic killing (OPK) assay has been developed for GAS by adapting the OPK methods utilized in Streptococcus pneumoniae vaccine testing. This assay uses dimethylformamide (DMF)-differentiated human promyelocytic leukemia cells (HL-60 cells) as a source of neutrophils and baby rabbit complement, thus removing the major sources of variation in the Lancefield assays. This protocol outlines methods for performing a GAS OPK assay including titering test sera to generate an opsonic index. This in vitro assay could aid in selecting vaccine candidates by demonstrating whether candidate-induced antibodies lead to complement deposition and opsonophagocytic killing
    • …
    corecore