9 research outputs found

    An overview of vaccines against sars-cov-2 in the covid-19 pandemic era

    No full text
    The emergence of SARS-CoV-2 in late 2019 led to the COVID-19 pandemic all over the world. When the virus was first isolated and its genome was sequenced in the early months of 2020, the efforts to develop a vaccine began. Based on prior well-known knowledge about coronavirus, the SARS-CoV-2 spike (S) protein was selected as the main target. Currently, more than one hundred vaccines are being investigated and several of them are already authorized by medical agencies. This review summarizes and compares the current knowledge about main approaches for vaccine development, focusing on those authorized and specifically their immunogenicity, efficacy preventing severe disease, adverse side effects, protection, and ability to cope with emergent SARS-CoV-2 variants

    A Mouse Model of Zika Virus Sexual Transmission and Vaginal Viral Replication

    No full text
    Case reports of Zika virus (ZIKV) sexual transmission and genital persistence are mounting. Venereal transmission and genital persistence threaten public health within and beyond the range of ZIKV’s mosquito vectors. In this study, we administered ZIKV into the vaginas of AG129 mice and LysMCre+IFNARfl/fl C57BL/6 mice after hormonal treatments. Mice infected during estrus-like phase were resistant to vaginal infection. In contrast, when infected during diestrus-like phase, AG129 mice succumbed to infection, whereas LysMCre+IFNARfl/fl mice experienced transient illness. Patency of transgenital transmission (TGT) in diestrus-like mice was demonstrated by detection of viremia and ZIKV replication in spleen and brain, and viral RNA persisted in vaginal washes as late as 10 days post-infection. In these lethal and sublethal mouse models, this study indicates that intravaginal deposition of ZIKV can cause TGT, hormonal changes in the female reproductive tract (FRT) influence transmission, and ZIKV replication persists in the FRT for several days

    SARS-CoV-2 and Dengue Virus Coinfection in a Mexican Pediatric Patient: A Case Report from Early Molecular Diagnosis

    No full text
    Mexico is an endemic region for dengue virus (DENV). The increase in this disease coincides with outbreaks of COVID-19, both of which are single-stranded positive RNA viruses. These characteristics make it difficult to distinguish each disease because they share clinical and laboratory features, which can consequently result in misdiagnoses. This is why the use of precision confirmatory tests (qRT-PCR) are crucial for early diagnosis. We herein report a pediatric patient who presented a coinfection for DENV and COVID-19, “SARS-CoV-2/Dengue”. This patient initially presented a fever, cough, and headache and, three days later, developed generalized pain and epistaxis. Blood studies revealed thrombocytopenia and leukopenia, and the patient was admitted to the hospital for a probable DENV infection. Within 48 h, qRT-PCR tests specific for SARS-CoV-2 and DENV were performed and resulted as positive. The patient immediately received pharmacological treatment with azithromycin, oseltamivir, and metamizole. During hospitalization (9 days), the patient had no signs of respiratory distress and maintained normal body temperature and normal blood oxygen saturation. This case warns of the need for early diagnosis and adequate clinical and pharmacological management in the face of a “SARS-CoV-2/Dengue” coinfection. Early molecular detection of both viruses and timely treatment helped the patient to achieve a favorable recovery

    Detection of Zika virus in mouse mammary gland and breast milk.

    No full text
    Clinical reports of Zika Virus (ZIKV) RNA detection in breast milk have been described, but evidence conflicts as to whether this RNA represents infectious virus. We infected post-parturient AG129 murine dams deficient in type I and II interferon receptors with ZIKV. ZIKV RNA was detected in pup stomach milk clots (SMC) as early as 1 day post maternal infection (dpi) and persisted as late as 7 dpi. In mammary tissues, ZIKV replication was demonstrated by immunohistochemistry in multiple cell types including cells morphologically consistent with myoepithelial cells. No mastitis was seen histopathologically. In the SMC and tissues of the nursing pups, no infectious virus was detected via focus forming assay. However, serial passages of fresh milk supernatant yielded infectious virus, and immunohistochemistry showed ZIKV replication protein associated with degraded cells in SMC. These results suggest that breast milk may contain infectious ZIKV. However, breast milk transmission (BMT) does not occur in this mouse strain that is highly sensitive to ZIKV infection. These results suggest a low risk for breast milk transmission of ZIKV, and provide a platform for investigating ZIKV entry into milk and mechanisms which may prevent or permit BMT

    CD4+ T cells promote humoral immunity and viral control during Zika virus infection.

    No full text
    Several Zika virus (ZIKV) vaccines designed to elicit protective antibody (Ab) responses are currently under rapid development, but the underlying mechanisms that control the magnitude and quality of the Ab response remain unclear. Here, we investigated the CD4+ T cell response to primary intravenous and intravaginal infection with ZIKV. Using the LysMCre+Ifnar1fl/fl (myeloid type I IFN receptor-deficient) C57BL/6 mouse models, we identified six I-Ab-restricted ZIKV epitopes that stimulated CD4+ T cells with a predominantly cytotoxic Th1 phenotype in mice primed with ZIKV. Intravenous and intravaginal infection with ZIKV effectively induced follicular helper and regulatory CD4+ T cells. Treatment of mice with a CD4+ T cell-depleting Ab reduced the plasma cell, germinal center B cell, and IgG responses to ZIKV without affecting the CD8+ T cell response. CD4+ T cells were required to protect mice from a lethal dose of ZIKV after infection intravaginally, but not intravenously. However, adoptive transfer and peptide immunization experiments showed a role for memory CD4+ T cells in ZIKV clearance in mice challenged intravenously. These results demonstrate that CD4+ T cells are required mainly for the generation of a ZIKV-specific humoral response but not for an efficient CD8+ T cell response. Thus, CD4+ T cells could be important mediators of protection against ZIKV, depending on the infection or vaccination context

    A Zika virus mutation enhances transmission potential and confers escape from protective dengue virus immunity.

    No full text
    Zika virus (ZIKV) and dengue virus (DENV) are arthropod-borne pathogenic flaviviruses that co-circulate in many countries. To understand some of the pressures that influence ZIKV evolution, we mimic the natural transmission cycle by repeating serial passaging of ZIKV through cultured mosquito cells and either DENV-naive or DENV-immune mice. Compared with wild-type ZIKV, the strains passaged under both conditions exhibit increased pathogenesis in DENV-immune mice. Application of reverse genetics identifies an isoleucine-to-valine mutation (I39V) in the NS2B proteins of both passaged strains that confers enhanced fitness and escape from pre-existing DENV immunity. Introduction of I39V or I39T, a naturally occurring homologous mutation detected in recent ZIKV isolates, increases the replication of wild-type ZIKV in human neuronal precursor cells and laboratory-raised mosquitoes. Our data indicate that ZIKV strains with enhanced transmissibility and pathogenicity can emerge in DENV-naive or -immune settings, and that NS2B-I39 mutants may represent ZIKV variants of interest

    Human coronavirus OC43-elicited CD4+ T cells protect against SARS-CoV-2 in HLA transgenic mice

    No full text
    Abstract SARS-CoV-2-reactive T cells are detected in some healthy unexposed individuals. Human studies indicate these T cells could be elicited by the common cold coronavirus OC43. To directly test this assumption and define the role of OC43-elicited T cells that are cross-reactive with SARS-CoV-2, we develop a model of sequential infections with OC43 followed by SARS-CoV-2 in HLA-B*0702 and HLA-DRB1*0101 Ifnar1 −/− transgenic mice. We find that OC43 infection can elicit polyfunctional CD8+ and CD4+ effector T cells that cross-react with SARS-CoV-2 peptides. Furthermore, pre-exposure to OC43 reduces subsequent SARS-CoV-2 infection and disease in the lung for a short-term in HLA-DRB1*0101 Ifnar1 −/− transgenic mice, and a longer-term in HLA-B*0702 Ifnar1 −/− transgenic mice. Depletion of CD4+ T cells in HLA-DRB1*0101 Ifnar1 −/− transgenic mice with prior OC43 exposure results in increased viral burden in the lung but no change in virus-induced lung damage following infection with SARS-CoV-2 (versus CD4+ T cell-sufficient mice), demonstrating that the OC43-elicited SARS-CoV-2 cross-reactive T cell-mediated cross-protection against SARS-CoV-2 is partially dependent on CD4+ T cells. These findings contribute to our understanding of the origin of pre-existing SARS-CoV-2-reactive T cells and their effects on SARS-CoV-2 clinical outcomes, and also carry implications for development of broadly protective betacoronavirus vaccines
    corecore