25 research outputs found

    The recombinant inhibitor of DNA binding Id2 forms multimeric structures via the helix-loop-helix domain and the nuclear export signal

    Get PDF
    The inhibitor of DNA binding and cell differentiation 2 (Id2) is a helix-loop-helix (HLH) protein that acts as negative dominant regulator of basic-HLH transcription factors during development and in cancer. The structural properties of Id2 have been investigated so far by using synthetic or recombinant fragments reproducing single domains (N-terminus, HLH, C-terminus): the HLH domain tends to dimerize into a four-helix bundle, whereas the flanking regions are flexible. In this work, the intact protein was expressed in E. coli, solubilized from inclusion bodies with urea, purified and dissolved in water at pH4. Under these conditions, Id2 was obtained with both cysteine residues disulfide-bonded to -mercaptoethanol that was present during the solubilization process. Moreover, it existed in a self-assembled state, in which the N-terminus remained highly flexible, while the HLH domain and, surprisingly, part of the C-terminus, which corresponds to the nuclear export signal (NES), both were involved in slowly tumbling, rigid structures. The protein oligomers also formed twisted fibrils that were several micrometers long and up to 80 nm thick. These results show that self-assembly decreases the backbone flexibility of those two protein regions (HLH and NES) that are important for interaction with basic-HLH transcription factors or for nucleocytoplasmic shuttling.(VLID)253307

    Rituximab-specific DNA aptamers are able to selectively recognize heat-treated antibodies

    No full text
    The monoclonal anti-CD20 IgG1 antibody rituximab is used as a first-line treatment for B cell lymphoma. Like all therapeutic antibodies, it is a complex protein for which both safety and efficacy heavily depend on the integrity of its three-dimensional structure. Aptamers, short oligonucleotides with a distinct fold, can be used to detect minor modifications or structural variations of a molecule or protein. To detect antibody molecules in a fold state occurring prior to protein precipitation, we generated DNA aptamers that were selected for extensively heat-treated rituximab. Using the magnetic bead-based systematic evolution of ligands by exponential enrichment (SELEX), we obtained six DNA aptamer sequences (40-mers) specific for 80°C heat-treated rituximab. In silico fold prediction and circular dichroism analysis revealed a G-quadruplex structure for one aptamer, while all others exhibited a B-DNA helix. Binding affinities ranging from 8.8-86.7 nM were determined by an enzyme-linked apta-sorbent assay (ELASA). Aptamers additionally detected structural changes in rituximab treated for 5 min at 70°C, although with lower binding activity. Notably, none of the aptamers recognized rituximab in its native state nor did they detect the antibody after it was exposed to lower temperatures or different physical stressors. Aptamers also reacted with the therapeutic antibody adalimumab incubated at 80°C suggesting similar aptamer binding motifs located on extensively heat-treated IgG1 antibodies. Within this work, we obtained the first aptamer panel, which is specific for an antibody fold state specifically present prior to protein aggregation. This study demonstrates the potential of aptamer selection for specific stress-based protein variants, which has potential impact for quality control of biopharmaceuticals

    Unambiguous Identification of Glucose-Induced Glycation in mAbs and other Proteins by NMR Spectroscopy.

    No full text
    Glycation is a non-enzymatic and spontaneous post-translational modification (PTM) generated by the reaction between reducing sugars and primary amine groups within proteins. Because glycation can alter the properties of proteins, it is a critical quality attribute of therapeutic monoclonal antibodies (mAbs) and should therefore be carefully monitored. The most abundant product of glycation is formed by glucose and lysine side chains resulting in fructoselysine after Amadori rearrangement. In proteomics, which routinely uses a combination of chromatography and mass spectrometry to analyze PTMs, there is no straight-forward way to distinguish between glycation products of a reducing monosaccharide and an additional hexose within a glycan, since both lead to a mass difference of 162 Da.To verify that the observed mass change is indeed a glycation product, we developed an approach based on 2D NMR spectroscopy spectroscopy and full-length protein samples denatured using high concentrations of deuterated urea.The dominating β-pyranose form of the Amadori product shows a characteristic chemical shift correlation pattern in 1H-13C HSQC spectra suited to identify glucose-induced glycation. The same pattern was observed in spectra of a variety of artificially glycated proteins, including two mAbs, as well as natural proteins.Based on this unique correlation pattern, 2D NMR spectroscopy can be used to unambiguously identify glucose-induced glycation in any protein of interest. We provide a robust method that is orthogonal to MS-based methods and can also be used for cross-validation

    “Small is beautiful” – the significance of reliable determination of low- abundant therapeutic antibody glycovariants

    No full text
    Glycans associated with biopharmaceutical drugs play crucial roles in drug safety and efficacy, and therefore, their reliable detection and quantification is essential. Our study introduces a multi-level quantification approach for glycosylation analysis in monoclonal antibodies, focusing on minor abundant glycovariants. Mass spectrometric data is evaluated mainly employing open-source software tools. Released glycan and glycopeptide data form the basis for integrating information across different molecular and structural levels up to intact glycoproteins. A comprehensive site-specific comparison showed that indeed, variations across structural levels were observed especially for minor abundant species. Utilizing MoFi, a tool for annotating mass peaks of intact proteins, we quantify isobaric glycosylation variants at the intact protein level. Our workflow\u27s utility is demonstrated on NISTmAb, rituximab and adalimumab, profiling their minor abundant variants for the first time across diverse structural levels. This study enhances understanding and accessibility in glycosylation analysis, emphasizing the significance of minor abundant glycovariants in therapeutic antibodies

    Simultaneous Monitoring of Monoclonal Antibody Variants by Strong Cation-Exchange Chromatography Hyphenated to Mass Spectrometry to Assess Quality Attributes of Rituximab-Based Biotherapeutics.

    Get PDF
    Different manufacturing processes and storage conditions of biotherapeutics can lead to a significant variability in drug products arising from chemical and enzymatic post-translational modifications (PTMs), resulting in the co-existence of a plethora of proteoforms with different physicochemical properties. To unravel the heterogeneity of these proteoforms, novel approaches employing strong cation-exchange (SCX) high-performance liquid chromatography (HPLC) hyphenated to mass spectrometry (MS) using a pH gradient of volatile salts have been developed in recent years. Here, we apply an established SCX-HPLC-MS method to characterize and compare two rituximab-based biotherapeutics, the originator MabThera® and its Indian copy product Reditux™. The study assessed molecular differences between the two drug products in terms of C-terminal lysine variants, glycosylation patterns, and other basic and acidic variants. Overall, MabThera® and Reditux™ displayed differences at the molecular level. MabThera® showed a higher degree of galactosylated and sialylated glycoforms, while Reditux™ showed increased levels of oligomannose and afucosylated glycoforms. Moreover, the two drug products showed differences in terms of basic variants such as C-terminal lysine and N-terminal truncation, present in Reditux™ but not in MabThera®. This study demonstrates the capability of this fast SCX-HPLC-MS approach to compare different drug products and simultaneously assess some of their quality attributes

    Aptamers as quality control tool for production, storage and biosimilarity of the anti-CD20 biopharmaceutical rituximab

    No full text
    Detailed analysis of biopharmaceuticals is crucial for safety, efficacy and stability. Aptamers, which are folded, single-stranded oligonucleotides, can be used as surrogate antibodies to detect subtle conformational changes. We aimed to generate and assess DNA aptamers against the therapeutic anti-CD20 antibody rituximab. Six rituximab-specific aptamers with Kd=354887nM were obtained using the magnetic bead-based systematic evolution of ligands by exponential enrichment (SELEX) technology. Aptamer folds were analysed by online prediction tools and circular dichroism spectroscopy suggesting quadruplex structures for two aptamers while others present B-DNA helices. Aptamer binding and robustness with respect to minor differences in buffer composition or aptamer folding were verified in the enzyme-linked apta-sorbent assay. Five aptamers showed exclusive specificity to the Fab-fragment of rituximab while one aptamer revealed a broader recognition pattern to other monoclonal antibodies. Structural differences upon incubation at 40C for 72h or UV exposure of rituximab were uncovered by four aptamers. High similarity between rituximab originator and biosimilar lots was demonstrated. The most sensitive aptamer (RA2) detected signal changes for all lots of a copy product suggesting conformational differences. For the first time, a panel of rituximab-specific aptamers was generated allowing the assessment of conformational coherence during production, storage, and biosimilarity of different products.P26125(VLID)339338

    A Generic HPLC Method for Absolute Quantification of Oxidation in Monoclonal Antibodies and Fc-Fusion Proteins Using UV and MS Detection

    No full text
    Oxidation of biopharmaceuticals may affect their bioactivity, serum half-life, and (bio)­chemical stability. The Fc domain of IgG monoclonal antibodies (mAbs) contains two methionine residues which are susceptible to oxidation. Here, we present a middle-down approach employing the cysteine protease IdeS under reducing conditions to obtain three mAb subunits of approximately 25 kDa: Fc/2, Fd′, and LC. These subunits were separated by ion-pair reversed-phase high-performance liquid chromatography (IP-RP-HPLC) and detected by UV spectroscopy as well as Orbitrap mass spectrometry (MS), as well as MS upon all-ion fragmentation (AIF-MS). We evaluated the feasibility of three strategies for absolute quantification of oxidation in the Fc region of hydrogen peroxide-stressed Rituximab, using a single, commercially available software platform both for data acquisition and evaluation: UV spectroscopy, full-scan MS, and monitoring of product ions obtained by AIF-MS. UV spectroscopy showed the lowest limits of quantification (LOQ) (0.96 ng μL<sup>–1</sup>) and featured the lowest relative process standard deviation (<i>V</i><sub>x0</sub>%) of 7.2% compared to MS and AIF-MS with LOQs of 1.24–4.32 ng μL<sup>–1</sup> and relative process standard deviations of 9.0–14%, respectively. Our approach is generic in that it allows monitoring and quantification of oxidation in the Fc regions of fully human and humanized IgG1 mAbs as well as of Fc-fusion proteins. This is exemplified by limits of detection of 1.2%, 1.0%, and 1.2% of oxidation in drug products containing the biopharmaceuticals Rituximab, Adalimumab, and Etanercept, respectively. The presented method is an attractive alternative to conventional time-intensive peptide mapping which is prone to artificial oxidation due to extensive sample preparation

    Overexpression of UDP-sugar pyrophosphorylase leads to higher sensitivity towards galactose, providing new insights into the mechanisms of galactose toxicity in plants

    No full text
    Galactose toxicity (Gal‐Tox) is a widespread phenomenon ranging from Escherichia coli to mammals and plants. In plants, the predominant pathway for the conversion of galactose into UDP‐galactose (UDP‐Gal) and UDP‐glucose is catalyzed by the enzymes galactokinase, UDP‐sugar pyrophosphorylase (USP) and UDP‐galactose 4‐epimerase. Galactose is a major component of cell wall polymers, glycolipids and glycoproteins; therefore, it becomes surprising that exogenous addition of galactose leads to drastic root phenotypes including cessation of primary root growth and induction of lateral root formation. Currently, little is known about galactose‐mediated toxicity in plants. In this study, we investigated the role of galactose‐containing metabolites like galactose‐1‐phosphate (Gal‐1P) and UDP‐Gal in Gal‐Tox. Recently published data from mouse models suggest that a reduction of the Gal‐1P level via an mRNA‐based therapy helps to overcome Gal‐Tox. To test this hypothesis in plants, we created Arabidopsis thaliana lines overexpressing USP from Pisum sativum. USP enzyme assays confirmed a threefold higher enzyme activity in the overexpression lines leading to a significant reduction of the Gal‐1P level in roots. Interestingly, the overexpression lines are phenotypically more sensitive to the exogenous addition of galactose (0.5 mmol L(−1) Gal). Nucleotide sugar analysis via high‐performance liquid chromatography‐mass spectrometry revealed highly elevated UDP‐Gal levels in roots of seedlings grown on 1.5 mmol L(−1) galactose versus 1.5 mmol L(−1) sucrose. Analysis of plant cell wall glycans by comprehensive microarray polymer profiling showed a high abundance of antibody binding recognizing arabinogalactanproteins and extensins under Gal‐feeding conditions, indicating that glycoproteins are a major target for elevated UDP‐Gal levels in plants

    Simultaneous monitoring of monoclonal antibody variants by strong cation-exchange chromatography hyphenated to mass spectrometry to assess biosimilar-ity of rituximab-based biotherapeutics

    No full text
    The increasing importance of biosimilars in the biopharmaceutical market leads to high demands for enhanced protein characterization methods. Different manufacturing processes can lead to a significant variability of biotherapeutics arising from chemical and enzymatic post translational modifications (PTMs), resulting in the co-existence of a plethora of proteoforms with different physicochemical properties. Thus, biosimilarity to the originator product must be proven rigorously. Among these PTMs, N-terminal pyroglutamate formation, C-terminal lysine clipping, glycosylation, glycation, and deamidation lead to differences in the net charge of the protein, resulting in charge variants (CV). To unravel the heterogeneity of these proteoforms, Strong Cat-ion eXchange (SCX) High-Performance Liquid Chromatography (HPLC) is routinely used. However, the use of non-volatile salts makes the technique incompatible for hyphenation to mass spectrometry (MS). Recently, an approach employing volatile salts and a pH gradient was applied for CV analysis, opening the era of SCX-HPLC-MS approaches. Here, we apply an already established SCX-HPLC-MS approach by Füssl et al. to characterize two Rituximab-based biotherapeutics, the originator MabThera® and its Indian copy product Reditux™. The study assessed molecular differences between the two drug products and constitutes the basis for biosimilarity characterization using a fast SCX-HPLC-MS approach

    The NMR signature of gluconoylation: a frequent N-terminal modification of isotope-labeled proteins

    No full text
    N-terminal gluconoylation is a moderately widespread modification in recombinant proteins expressed in Escherichia coli, in particular in proteins bearing an N-terminal histidine-tag. This post-translational modification has been investigated mainly by mass spectrometry. Although its NMR signals must have been observed earlier in spectra of 13C/15N labeled proteins, their chemical shifts were not yet reported. Here we present the complete 1H and 13C chemical shift assignment of the N-terminal gluconoyl post-translational modification, based on a selection of His-tagged protein constructs (CCL2, hnRNP A1 and Lin28) starting with Met-Gly-...-(His)6. In addition, we show that the modification can hydrolyze over time, resulting in a free N-terminus and gluconate. This leads to the disappearance of the gluconoyl signals and the appearance of gluconate signals during the NMR measurements. The chemical shifts presented here can now be used as a reference for the identification of gluconoylation in recombinant proteins, in particular when isotopically labeled.(VLID)340695
    corecore