176 research outputs found

    A Physical Axiomatic Approach to Schrodinger's Equation

    Full text link
    The Schrodinger equation for non-relativistic quantum systems is derived from some classical physics axioms within an ensemble hamiltonian framework. Such an approach enables one to understand the structure of the equation, in particular its linearity, in intuitive terms. Furthermore it allows for a physically motivated and systematic investigation of potential generalisations which are briefly discussed.Comment: Extended version. 14 page

    A Schroedinger link between non-equilibrium thermodynamics and Fisher information

    Full text link
    It is known that equilibrium thermodynamics can be deduced from a constrained Fisher information extemizing process. We show here that, more generally, both non-equilibrium and equilibrium thermodynamics can be obtained from such a Fisher treatment. Equilibrium thermodynamics corresponds to the ground state solution, and non-equilibrium thermodynamics corresponds to excited state solutions, of a Schroedinger wave equation (SWE). That equation appears as an output of the constrained variational process that extremizes Fisher information. Both equilibrium- and non-equilibrium situations can thereby be tackled by one formalism that clearly exhibits the fact that thermodynamics and quantum mechanics can both be expressed in terms of a formal SWE, out of a common informational basis.Comment: 12 pages, no figure

    Towards nonlinear quantum Fokker-Planck equations

    Full text link
    It is demonstrated how the equilibrium semiclassical approach of Coffey et al. can be improved to describe more correctly the evolution. As a result a new semiclassical Klein-Kramers equation for the Wigner function is derived, which remains quantum for a free quantum Brownian particle as well. It is transformed to a semiclassical Smoluchowski equation, which leads to our semiclassical generalization of the classical Einstein law of Brownian motion derived before. A possibility is discussed how to extend these semiclassical equations to nonlinear quantum Fokker-Planck equations based on the Fisher information

    Quantum properties of classical Fisher information

    Get PDF
    The Fisher information of a quantum observable is shown to be proportional to both (i) the difference of a quantum and a classical variance, thus providing a measure of nonclassicality; and (ii) the rate of entropy increase under Gaussian diffusion, thus providing a measure of robustness. The joint nonclassicality of position and momentum observables is shown to be complementary to their joint robustness in an exact sense.Comment: 16 page

    Use of nanoscale zero-valent iron for remediation of clayey soil contaminated with hexavalent chromium : batch and column tests

    Get PDF
    This study investigated the reduction of hexavalent chromium (Cr(VI)) in a clayey residual soil using nanoscale zero-valent iron (nZVI). Five di erent ratios between nZVI and Cr(VI) were tested in batch tests (1000/11; 1000/23; 1000/35; 1000/70, and 1000/140 mg/mg) with the soil. With the selected proportion resulting best e ciency, the column tests were conducted, with molded specimens of 5 cm in diameter and 5 cm in height, with di erent nZVI injection pressures (10, 30, and 100 kPa). The soil was contaminated with 800 mg/kg of Cr(VI). The Cr(VI) and Cr(III) analyses were performed following the USEPA 3060A and USEPA 7196A standards. The results show that the reduction of Cr(VI) is dependent on the ratio between nZVI and Cr(VI), reaching 98% of e ciency. In column tests, the pressure of 30 kPa was the most e cient. As pressure increased, contaminant leaching increased. The permeability decreased over time due to the gradual increase in filtration and formation of oxyhydroxides, limiting nZVI mobility. Overall, nZVI is e cient for soil remediation with Cr(VI), but the injection process can spread the contaminated if not properly controlled during in situ application

    The gravity-related decoherence master equation from hybrid dynamics

    Full text link
    Canonical coupling between classical and quantum systems cannot result in reversible equations, rather it leads to irreversible master equations. Coupling of quantized non-relativistic matter to gravity is illustrated by a simplistic example. The heuristic derivation yields the theory of gravity-related decoherence proposed longtime ago by Penrose and the author.Comment: 9pp, extended version of invited talk at Fifth International Workshop DICE2010 (Castello Pasquini/Castiglioncello/Tuscany, Sept. 13-17, 2010

    Interacting classical and quantum ensembles

    Full text link
    A consistent description of interactions between classical and quantum systems is relevant to quantum measurement theory, and to calculations in quantum chemistry and quantum gravity. A solution is offered here to this longstanding problem, based on a universally-applicable formalism for ensembles on configuration space. This approach overcomes difficulties arising in previous attempts, and in particular allows for backreaction on the classical ensemble, conservation of probability and energy, and the correct classical equations of motion in the limit of no interaction. Applications include automatic decoherence for quantum ensembles interacting with classical measurement apparatuses; a generalisation of coherent states to hybrid harmonic oscillators; and an equation for describing the interaction of quantum matter fields with classical gravity, that implies the radius of a Robertson-Walker universe with a quantum massive scalar field can be sharply defined only for particular `quantized' values.Comment: 31 pages, minor clarifications and one Ref. added, to appear in PR

    Neutron-induced background in the CONUS experiment

    Full text link
    CONUS is a novel experiment aiming at detecting elastic neutrino nucleus scattering in the fully coherent regime using high-purity Germanium (Ge) detectors and a reactor as antineutrino (νˉ\bar\nu) source. The detector setup is installed at the commercial nuclear power plant in Brokdorf, Germany, at a very small distance to the reactor core in order to guarantee a high flux of more than 1013νˉ^{13}\bar\nu/(s\cdotcm2^2). For the experiment, a good understanding of neutron-induced background events is required, as the neutron recoil signals can mimic the predicted neutrino interactions. Especially neutron-induced events correlated with the thermal power generation are troublesome for CONUS. On-site measurements revealed the presence of a thermal power correlated, highly thermalized neutron field with a fluence rate of (745±\pm30)cm2^{-2}d1^{-1}. These neutrons that are produced by nuclear fission inside the reactor core, are reduced by a factor of \sim1020^{20} on their way to the CONUS shield. With a high-purity Ge detector without shield the γ\gamma-ray background was examined including highly thermal power correlated 16^{16}N decay products as well as γ\gamma-lines from neutron capture. Using the measured neutron spectrum as input, it was shown, with the help of Monte Carlo simulations, that the thermal power correlated field is successfully mitigated by the installed CONUS shield. The reactor-induced background contribution in the region of interest is exceeded by the expected signal by at least one order of magnitude assuming a realistic ionization quenching factor of 0.2.Comment: 28 pages, 28 figure

    Results for the response function determination of the Compact Neutron Spectrometer

    Full text link
    The Compact Neutron Spectrometer (CNS) is a Joint European Torus (JET) Enhancement Project, designed for fusion diagnostics in different plasma scenarios. The CNS is based on a liquid scintillator (BC501A) which allows good discrimination between neutron and gamma radiation. Neutron spectrometry with a BC501A spectrometer requires the use of a reliable, fully characterized detector. The determination of the response matrix was carried out at the Ion Accelerator Facility (PIAF) of the Physikalisch-Technische Bundesanstalt (PTB). This facility provides several monoenergetic beams (2.5, 8, 10, 12 and 14 MeV) and a 'white field'(Emax ~17 MeV), which allows for a full characterization of the spectrometer in the region of interest (from ~1.5 MeV to ~17 MeV. The energy of the incoming neutrons was determined by the time of flight method (TOF), with time resolution in the order of 1 ns. To check the response matrix, the measured pulse height spectra were unfolded with the code MAXED and the resulting energy distributions were compared with those obtained from TOF. The CNS project required modification of the PTB BC501A spectrometer design, to replace an analog data acquisition system (NIM modules) with a digital system developed by the 'Ente per le Nuove tecnologie, l'Energia e l'Ambiente' (ENEA). Results for the new digital system were evaluated using new software developed specifically for this project.Comment: Proceedings of FNDA 201

    Schroedingers equation with gauge coupling derived from a continuity equation

    Full text link
    We consider a statistical ensemble of particles of mass m, which can be described by a probability density \rho and a probability current \vec{j} of the form \rho \nabla S/m. The continuity equation for \rho and \vec{j} implies a first differential equation for the basic variables \rho and S. We further assume that this system may be described by a linear differential equation for a complex state variable \chi. Using this assumptions and the simplest possible Ansatz \chi(\rho,S) Schroedingers equation for a particle of mass m in an external potential V(q,t) is deduced. All calculations are performed for a single spatial dimension (variable q) Using a second Ansatz \chi(\rho,S,q,t) which allows for an explict q,t-dependence of \chi, one obtains a generalized Schroedinger equation with an unusual external influence described by a time-dependent Planck constant. All other modifications of Schroeodingers equation obtained within this Ansatz may be eliminated by means of a gauge transformation. Thus, this second Ansatz may be considered as a generalized gauging procedure. Finally, making a third Ansatz, which allows for an non-unique external q,t-dependence of \chi, one obtains Schroedingers equation with electromagnetic potentials \vec{A}, \phi in the familiar gauge coupling form. A possible source of the non-uniqueness is pointed out.Comment: 25 pages, no figure
    corecore