1,021 research outputs found

    Astrophysical Sources of Stochastic Gravitational-Wave Background

    Full text link
    We review the spectral properties of stochastic backgrounds of astrophysical origin and discuss how they may differ from the primordial contribution by their statistical properties. We show that stochastic searches with the next generation of terrestrial interferometers could put interesting constrains on the physical properties of astrophysical populations, such as the ellipticity and magnetic field of magnetars, or the coalescence rate of compact binaries.Comment: 12 pages, 3 figures,accepted for publication in CQG, GWDAW12 conference proceedings version corrected in comparison published version where we found an error in equation (4

    Second Einstein Telescope Mock Science Challenge : Detection of the GW Stochastic Background from Compact Binary Coalescences

    Full text link
    We present the results of the search for an astrophysical gravitational-wave stochastic background during the second Einstein Telescope mock data and science challenge. Assuming that the loudest sources can be detected individually and removed from the data, we show that the residual background can be recovered with an accuracy of 11% with the standard cross-correlation statistic, after correction of a systematic bias due to the non-isotropy of the sources.Comment: 15 pages, 4 figures, accepted for publication in Physical Review

    Gravitation Wave Emission from Radio Pulsars Revisited

    Get PDF
    We report a new pulsar population synthesis based on Monte Carlo techniques, aiming to estimate the contribution of galactic radio pulsars to the continuous gravitational wave emission. Assuming that the rotation periods of pulsars at birth have a Gaussian distribution, we find that the average initial period is 290 ms. The number of objects with periods equal to or less than 0.4 s, and therefore capable of being detected by an interferometric gravitational antenna like VIRGO, is of the order of 5100-7800. With integration times lasting between 2 and 3 yr, our simulations suggest that about two detections should be possible, if the mean equatorial ellipticity of the pulsars is ϵ\epsilon =106^{-6}. A mean ellipticity an order of magnitude higher increases the expected number of detections to 12-18, whereas for ϵ<106\epsilon < 10^{-6}, no detections are expectedComment: accepted for publication in A&A, 9 pages, 8 figure

    Evidence for a dual population of neutron star mergers from short Gamma-Ray Burst observations

    Full text link
    Short duration Gamma-Ray Bursts are thought to originate from the coalescence of neutron stars in binary systems. They are detected as a brief (<< 2s), intense flash of gamma-ray radiation followed by a weaker, rapidly decreasing afterglow. They are expected to be detected by Advanced LIGO and Virgo when their sensitivity will be low enough. In a recent study we identified a population of short Gamma-Ray Bursts that are intrinsically faint and nearby. Here we provide evidence in favor of the existence of this new population that can hardly be reproduced with a model of field neutron star binary coalescences. We propose that these systems may be produced dynamically in globular clusters, and may result from the merger of a black hole and a neutron star. The advanced LIGO and Virgo observation of a high rate of NSBH mergers compatible with the dynamical formation in globular clusters would be a confirmation of this hypothesis and would enable for the derivation of the mass function of black holes inside globular clusters, as well as the luminosity function of faint short GRBs.Comment: 15 pages, 5 figures, 1 table, submitted to Ap

    Searching Gravitational Waves from Pulsars, Using Laser Beam Interferometers

    Get PDF
    We use recent population synthesis results to investigate the distribution of pulsars in the frequency space, having a gravitational strain high enough to be detected by the future generations of laser beam interferometers. We find that until detectors become able to recover the entire population, the frequency distribution of the 'detectable' population will be very dependent on the detector noise curve. Assuming a mean equatorial deformation ϵ=106\epsilon =10^{-6}, the optimal frequency is around 450 Hz for interferometers of the first generation (LIGO or VIRGO) and shifts toward 85 Hz for advanced detectors. An interesting result for future detection stategies is the significant narrowing of the distribution when improving the sensitivity: with an advanced detector, it is possible to have 90% of detection probability while exploring less than 20% of the parameter space (7.5% in the case of ϵ=105\epsilon =10^{-5}). In addition, we show that in most cases the spindown of 'detectable' pulsars represents a period shift of less than a tens of nanoseconds after one year of observation, making them easier to follow in the frequency space.Comment: 5 pages, 3 figures accepted for publication in Astronomy & Astrophysic

    Stochastic backgrounds of gravitational waves from extragalactic sources

    Full text link
    Astrophysical sources emit gravitational waves in a large variety of processes occurred since the beginning of star and galaxy formation. These waves permeate our high redshift Universe, and form a background which is the result of the superposition of different components, each associated to a specific astrophysical process. Each component has different spectral properties and features that it is important to investigate in view of a possible, future detection. In this contribution, we will review recent theoretical predictions for backgrounds produced by extragalactic sources and discuss their detectability with current and future gravitational wave observatories.Comment: 10 pages, 9 figures, proceedings of the GWDAW 10 Conference, submitted to Class. & Quantum Gra

    Stochastic Gravitational Wave Background from Coalescing Binary Black Holes

    Full text link
    We estimate the stochastic gravitational wave (GW) background signal from the field population of coalescing binary stellar mass black holes (BHs) throughout the Universe. This study is motivated by recent observations of BH-Wolf-Rayet star systems and by new estimates in the metallicity abundances of star forming galaxies that imply BH-BH systems are more common than previously assumed. Using recent analytical results of the inspiral-merger-ringdown waveforms for coalescing binary BH systems, we estimate the resulting stochastic GW background signal. Assuming average quantities for the single source energy emissions, we explore the parameter space of chirp mass and local rate density required for detection by advanced and third generation interferometric GW detectors. For an average chirp mass of 8.7MM_{\odot}, we find that detection through 3 years of cross-correlation by two advanced detectors will require a rate density, r00.5Mpc3Myr1r_0 \geq 0.5 \rm{Mpc}^{-3} \rm{Myr}^{-1}. Combining data from multiple pairs of detectors can reduce this limit by up to 40%. Investigating the full parameter space we find that detection could be achieved at rates r00.1Mpc3Myr1r_0 \sim 0.1 \rm{Mpc}^{-3} \rm{Myr}^{-1} for populations of coalescing binary BH systems with average chirp masses of 15M\sim 15M_{\odot} which are predicted by recent studies of BH-Wolf-Rayet star systems. While this scenario is at the high end of theoretical estimates, cross-correlation of data by two Einstein Telescopes could detect this signal under the condition r0103Mpc3Myr1r_0 \geq 10^{-3} \rm{Mpc}^{-3} \rm{Myr}^{-1}. Such a signal could potentially mask a primordial GW background signal of dimensionless energy density, ΩGW1010\Omega_{\rm{GW}}\sim 10^{-10}, around the (1--500) Hz frequency range.Comment: 22 pages, 5 figures, 2 tables, Accepted for publication by Ap

    Effect of metallicity on the gravitational-wave signal from the cosmological population of compact binary coalescences

    Full text link
    Recent studies on stellar evolution have shown that the properties of compact objects strongly depend on the metallicity of the environment in which they were formed. Using some very simple assumptions on the metallicity of the stellar populations, we explore how this property affects the unresolved gravitational-wave background from extragalactic compact binaries. We obtained a suit of models using population synthesis code, estimated the gravitational-wave background they produce, and discuss its detectability with second- (advanced LIGO, advanced Virgo) and third- (Einstein Telescope) generation detectors. Our results show that the background is dominated by binary black holes for all considered models in the frequency range of terrestrial detectors, and that it could be detected in most cases by advanced LIGO/Virgo, and with Einstein Telescope with a very high signal-to-noise ratio. The observed peak in a gravitational wave spectrum depends on the metallicity of the stellar population.Comment: 9 pages, 5 figures, accepted to A&

    Stochastic background from extra-galactic double neutron stars

    Full text link
    We present Monte Carlo simulations of the extra galactic population of inspiralling double neutron stars, and estimate its contribution to the astrophysical gravitational wave background, in the frequency range of ground based interferometers, corresponding to the last thousand seconds before the last stable orbit when more than 96 percent of the signal is released. We show that sources at redshift z>0.5 contribute to a truly continuous background which may be detected by correlating third generation interferometers.Comment: 13 pages, 7 figures - proceeding of a talk given at the 11th GWDAW, to appear in CQ
    corecore